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ABSTRACT

Photorealistic modeling and rendering of materials with complex internal mesostructure is a hard challenge in Computer
Graphics. In particular, macroscopic porous materials consist of complex translucent substances that exhibit different
details and light interaction at several different scales. State-of-the-art techniques for modeling porous materials manage
the material either as a surface and set up complex capture procedures or as a volume by employing different instances of
procedural noise models for its representation. While the surface solution achieves several desired material properties, it
still presents drawbacks in practical applications—high computational costs, complex capture procedures, and poor image
variability, among others. Volumetric solutions are more flexible, but the final structure and appearance are difficult to
control. To overcome these drawbacks, we propose an algorithm for the procedural generation of porous materials. The
method is based on an artistic and physically inspired simulation of the growth of self-avoiding bubbles inside a volume,
by means of dynamical systems. The patterns induced by the bubbles can be easily and intuitively controlled. The bubbles
adapt to any given shape and have convincing global and local fluid-like patterns as seen in bread and sponges. Our
method generates 3D textures that adequately represent porous materials, which can be used as input for creating realistic
renderings of different porous objects. As a case study, we present the results of using these 3D textures as input to a direct
volume renderer and show that they compare favorably with standard 3D texture synthesis methods. Copyright © 2016
John Wiley & Sons, Ltd.
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The choice of a geometrical model depends on the mate-
rial and the intended representation scale, which, in turn,
highly influences the design of a rendering algorithm.
In particular, the main approaches can be categorized as
either surface or volume modeling. Mathematical models
of the light transport phenomena in these two approaches
have been proposed by J. Kajiya; the rendering equation [1]
for modeling the geometrical optic behavior in surfaces and
the volume rendering equation [2] for the representation of

1. INTRODUCTION

The overwhelming variety of materials and complex
light transport phenomena they induce have been a
central research topic in computer graphics for decades.
Physics-based modeling may achieve realistic light trans-
port phenomena simulations, and, for this reason, feasible
computational approximations are a mainstream topic in

rendering research. In complex materials, geometric mod-
eling undergoes a similar research strategy, starting from a
physics-based understanding of the material that leads to
an adequate computational approximation. Realistic mate-
rial rendering should take geometrical modeling and light
interaction simultaneously into consideration.

Copyright © 2016 John Wiley & Sons, Ltd.

scattering phenomena in volume densities.

Typically, a surface representation is preferred for
macroscopically homogeneous materials (metals, plastics,
and similar materials) [3]. This method models micro-
scopic surface details using statistical assumptions. If
mesoscopic details are modeled (as required for instance
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in wood or bricks) [4], a usual technique is to precom-
pute these details in textures that can be mapped onto
surfaces. Locally flat surfaces are fast to render, but sur-
face rendering imposes limitations to the features that can
be realistically modeled, in particular the ones that arise
because of the mesoscopic structure and the related light
transport phenomena in the materials.

Bread crumbs, sponges, stones, and other porous mate-
rials are extremely complex to model and render because
of their intricate geometry and the light transport phe-
nomena arising within them. In this particular case, the
naive surface approach flatly fails, because mesoscopic
details, clearly visible on their surfaces, are essential for
a faithful representation of the material. More sophisti-
cated surface modeling techniques, such as bidirectional
texture functions [5], do not always handle light trans-
port phenomena adequately. To overcome some of these
limitations, a complex material model was proposed [6].
This method produces more realistic results, but the captur-
ing and rendering procedures are extremely complex, and
the geometric modeling is somewhat inflexible (e.g., the
surface representation does not allow arbitrary cuts).

There is a vast body of literature on volumetric represen-
tation of materials (e.g., smoke and clouds) [7,8]. Volumes,
while usually computationally more expensive to render,
do not have the aforementioned drawbacks that surfaces
have [9]. The characteristics of surface and volume ren-
dering imply that there is a trade-off between geometrical
representations for complex materials. Where simplicity
and real-time rendering are required, simplified geometric
models and surface-based rendering approaches are used,
and when photorealism is the strongest requirement, com-
plex geometric models and volume-based rendering are
better suited for the task. However, the development of
Graphics Processing Unit (GPU) has an influence on this
trade-off, since recent hardware allows us to rely on vol-
ume representations to be rendered at interactive rates, as
we will show in this work.

In [10], the authors presented a bread crumb mod-
eling algorithm that was able to emulate most of the
mesoscopic features of the material. However, the proce-
dure was independent from the external shape. In other
words, the mesoscopic structure (the gas bubbles in the
crumb) does not follow the boundaries of the object and
does not have a well-defined center. In [11], the proce-
dural model was extended to adequately accommodate
the mesoscopic structure of the material with respect to
the original dough shape (before bread baking), and other
enhancements were also proposed, including a simple but
effective model of the crust formation process. The phe-
nomenological aspects of the model were validated using a
multifractal characterization. In both papers, the focus was
on a realistic model of bread crumb, without concerning on
computational limitations.

In this work, we propose a non-physically based method,
obtained as a simplified relaxation of physically based
models, that is nevertheless able to represent and render
porous materials with adequate accuracy. This simplifica-
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tion extends the modeling capabilities to include arbitrary
geometries into the process.

Instead of computing voxel values using algebraic func-
tions [12], the geometry is modeled using particle sys-
tems [13]in a 3D cube that evolves by means of dynamical
systems (DSs) [14]. This allows us to emulate several
processes that achieve mesostructural distributions with
controllable geometric and statistical properties.

To demonstrate the capabilities of our method, we use
its output in a direct volume rendering (DVR) [15-17]
application. We show that using our method results in
realistic-looking porous objects. Furthermore, the final
shape of the rendered object can be modified interac-
tively, allowing, among other things, to perform arbi-
trary cuts and slices in real time. Finally, we compare
our results with images generated with standard tex-
ture synthesis algorithms used for creating porous or
cell-based structures.

This work is organized as follows. First, we present an
overview of the underlying ideas used in our modeling,
including particle systems and DSs. Then, we present a
detailed description of the modeling workflow. Following
that, we discuss the results of the modeling step and show
that they can be used to create realistic renderings with
DVR. Finally, we summarize the conclusions, as well as
the future work enabled by our results.

2. PREVIOUS WORK

The topic of photorealistic material modeling and render-
ing recently attracted a significant amount of research.
Much work has focused on frequently appearing com-
plex materials such as water [18,19], skin [20], metals,
and plastics [21]. Still, the computer graphics community
has struggled to emulate the appearance of other materi-
als adequately, for instance, baked materials (e.g., pizza
and cookies), but because of their complex geometry and
the complex underlying light transport phenomena, this
continues to be an open problem [22]. Until recently, the
computational cost of rendering physically based mod-
els of these materials was impractical when real time
was a requirement. However, the remarkable growth in
computing power due to the massively parallel design of
modern graphics cards [23,24] is enabling the simula-
tion of complex light transport phenomena at acceptable
refresh rates.

The presence of mesostructures (bubbles and alve-
oli of complex shapes) makes porous materials
quasi-homogeneous [6]. For this reason, adequate surface
representations of these materials are not possible. Typical
techniques such as bidirectional reflectance distribu-
tion functions [25] and bidirectional surface scattering
reflectance distribution functions [26] are not satisfactory.
A material model [6] solves these limitations, but the asso-
ciated drawbacks (complex capture procedure involved,
computational costs, poor geometry variability) makes the
method far from practical.

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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Simulating acceptable materials with rich and com-
plex mesostructure represents an additional challenge.
Porous structures are the result of complex mechanisms
involving physical deformations, heat and mass transport
(if baked), and several chemical reactions. In the past,
there have been few attempts to synthesize or simulate the
resulting geometries. One approach uses artistic consid-
erations [27], but details were not published because of
copyright issues. Recent studies employ phenomenologi-
cal considerations in actual specific materials, for example,
bread, but the modeling procedures produce fixed geome-
tries (i.e., non-procedural) [28]. This is a serious drawback
because of several reasons. A fixed geometry cannot be
used to obtain different material types easily, because it
requires a capture procedure for each of them. In addition,
the mesostructural distribution (bubbles, alveoli, etc.) can
be neither controlled nor changed. Finally, this method of
modeling does not allow an interaction with the geometry
of the material (i.e., slicing).

Nonetheless, research on physically inspired mathemat-
ical models of materials such as bread crumbs is not
uncommon in the food industry-related literature. These
models aim to adequately simulate heat and mass transfer
in dough during baking, as well as other properties. Recent
results suggest that 1D models could suffice, for instance,
modeling the geometry as an infinite cylinder, or assuming
only one radial coordinate [29,30]. These and other results
in the food industry have some significance in bread crumb
modeling and rendering and may be used as a further basis
for computational baking models.

3. MODELING POROUS MATERIALS

In this section, we provide the required background and the
algorithms involved in the modeling workflow.

3.1. Particle Systems

Particle systems [13] deal with phenomena that have
no well-defined geometric interface, like water [18],
smoke [31], and fireworks. They are composed of enti-
ties called particles whose properties evolve over time.
For instance, the method can easily model fireworks by
simply defining a common space position for all particles
and, after each time step, modifying each particle position
following a slightly different trajectory for each particle.
Particle systems are used to model fire and other effects by
modifying properties such as color, size, and direction and
they can affect each other. We emulate a porous formation
process using a self-avoiding particle system in 3D space,
combined with a system of differential equations to control
the particle growth. This algorithm produces a 3D texture
representing the geometry of the material.

3.2. Proposed Modeling Algorithm

This algorithm produces the underlying mesoscopic geom-
etry description. Instead of delivering the color of a
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particular space position, it will generate a volumetric tex-
ture composed of 0’s and 1’s (0: air, 1: mass). The system
consists of a set of particles P,

P={p1,....pn},n €N (D)
a lattice Lyxyxn.N € N (initially L,y, = 1) of mass
and air, and a lattice L12va><N’ (initially Lfyz = —1), of

positions and particle ownership (i if the lattice element
belongs to the interior or contour - immediate lattice neigh-
bors to interior positions - of the particle i). Each element
in P has the following properties:

pi=1{0;,Ci},1 <i<n )
where

e O; = {o01,...,04}: (occupied) vector (set) of occu-
pied positions by the particle in L.

e C;={ci,...,cm}: (contour) vector (set) of positions
representing the particle contour in L.

The vector O represents the positions affected by the
particle, and the contour C warrant avoidance with other
particles. We describe the procedure in more detail in
Algorithm 1. When ¢ = 0, a set of particles takes random
lattice positions. Each particle adds its position to O and
the surrounding positions to C. In each iteration, each par-
ticle chooses a position on its contour. If the position lies
in the contour of any other particle (L]% <> i and
L]%m‘ition
contour position. If that position is free (Lﬁwition

; osition = — 1), the particle adds the position to its O and
updates its contour C and the lattices. If the contour vector
is empty, the particle dies, because it cannot grow anymore
in the simulation. Termination of the algorithm is possible
at any r. The user can stop the simulation at a particular
event, for instance, when the 12 lattice is full (L)zcyz <> —1
in any lattice position), because no progress can be made.

The method produces different structures varying the
contour size (separation in Algorithm 1; Figure 1).
Figure 1 shows 2D output examples (for better under-
standing) of random growing particles. The contour
size determines the white region among particles (mass)
(the width of the white area). The output of the algo-
rithm is the lattice L. The resulting images resembles
Voronoi-like patterns.

osition
> —1), the process discards it and selects another

=ior

3.3. Particle Evolution Using
Dynamical Systems

Human perception is very sensitive to patterns, particu-
larly in porous structures. For instance, in bread, the eye
immediately recognizes that the bubble shapes tend to fol-
low the crust shape. This effect is due to the fact that the
temperature during baking affects the shape of the bub-
bles [32], stretching them to follow the crust. Also, the
entire structure has a fluid-like appearance. Indeed, this is
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Algorithm 1 Modeling Algorithm

t=0,P=]]
L = matrix(MxMxM).init_values(1)
L? = matrix(MxMxM).init_values(—1)
for i € [1, particles_count] do
x < random(),y < random()
O[i] < [[x.y]. Cli] < 1[I
for v € neighborhood(x,y) do
Cli].add(v)
end for
P.add([O]i], C[i]])
end for
for ¢ € [0, max_time] do
for i € [1, particles_count] do
if empry? C[i] then
die()
end if
for h € C[i] do
Cli].delete(h)

> time (iteration), particles

> Geometry - initiated to 1 (mass)

> Particle Domain

> random position in L for each particle

> the position was explored

if 1(L2[h] > 0 && L2[h]! = i && free_boundary(separation)) then

L[] < 0, O[i].add(h)

> mass — > air **

Cli].add(neighborhood(h)), L? set(neighborhood(h), i)

L2 set(h, i)
end if
end for
end for
end for

> Mark positions in L? as i
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Figure 1. Modeling algorithm, different values for the separation parameter. Left: separation = 1, center: separation = 2, right:
separation = 4.

the case in early stages of the baking process. At some
point, the viscosity of the dough decreases, and the bubbles
stop growing and merging with each other.

Dynamical systems are a mathematical framework
for understanding the dynamic behavior of differential
equations in dynamical processes [14]. Many dynami-
cal phenomena can be described by defining differential
equations that represent their behavior in time, simulating
the evolution of the system and deriving approximate albeit
useful solutions. DS have been used in several domains
for generating structures that resemble natural shapes.

A numeric integration of the equations starting from sev-
eral initial conditions (or seeds) gives rise to a set of
streamlines. For instance, the following equations produce
Figure 2(a):

= -y +1 3)
y=2xy+1
Figure 2(b) and (c) is an example of other equations
sets, where the resulting streamlines show different
geometrical patterns

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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Figure 2. Examples of dynamical systems in the plane used to simulate fluid-like patterns.

A DS can be used to drag information along the stream-
lines. In particular, for our modeling algorithm, we will
use a DS to modify the underlying geometry of the par-
ticle system shown previously. The application of our
proposed DS will modify the system by moving the parti-
cles along the streamlines. This will alter the geometrical
structure of the volume in a way that mimics the defor-
mation of the bubbles described previously. Algorithm 2
shows the modification that we introduced to the original
modeling algorithm.

Algorithm 2 Dynamical Systems Modification for the
modeling algorithm
L[h] <0
Oli].add(h)
solution <— Runge_Kutta(h) > Computes next position
neigh = neighborhood(h)
best = abs(neigh|0] — solution)
chosen = h
neigh.delete(h)
for w € neigh do
/I Best neighborhood solution that approximates the
system
if abs(neigh|w] — solution) < best then
best = abs(neigh[w] — solution)
chosen = w
end if
if random() > 1 — randomness then
>0 <= random() <=1

> mass — > air **

Cli].add(w)
end if
end for
/I The best approximation is added
Cli].add(chosen)

Figure 3 shows particles following the DS streamlines,
where the DS is the same as in Figure 3(c). From left
to right, we decrement the randomness of the trajectories,
which is a parameter of our model. A randomness value of
r (0 < r < 1) forces the particles to follow the DS tra-
jectories with a probability of 1 — r. The resulting patterns

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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are now more similar to those arising in real bread and
other baked materials. Different mesostructures can be pro-
duced employing a different set of equations and different
parameters for the particle systems (lifetime, randomness).

3.4. System Setup

In order to represent several porous structures such as
sponges, bread, cakes, and pizzas, the growing particles
should adapt to arbitrary material silhouettes. Some mate-
rials, for instance, bread or bones, have elongated bub-
bles oriented parallel to the object boundaries, because
the bubbles are stretched and pushed towards the bound-
aries during baking or growing. In other porous struc-
tures as sponges, the cells seem to be homogeneously
orientated. Typical bones show mixed porous and
non-porous structures, and regions where the trabecular tis-
sue is predominantly oriented in some directions, depend-
ing on bone health, age, and other factors. Our modeling
algorithm can cope with all these situations by defining
several DS with different behaviors for different regions.

The procedure starts by voxelizing an arbitrary input
geometry, defining a region of interest where the parti-
cle system can grow (setting 1 if the voxel belongs to the
geometry, and O otherwise). Then, we define boundary con-
ditions on the resulting volumetric texture. We employ a
slice-based approach, meaning the boundary condition and
the dynamic system are defined on a 2D volume slice.
Albeit not a complete 3D parametrization, this choice pro-
duces a modeling algorithm that is more intuitive to define
and visualize, because the DS only needs to be specified in
2D coordinates.

To do this, we define a principal axis on the volume
among the three Cartesian axes (the axis is a parameter of
our model), based on which each slice is defined. From
each slice, we obtain its center of mass, defining a circu-
lar pattern around it using a DS. The exact dynamic system
can be tuned to obtain slightly different appearances (roll,
spiral, etc.). Typical systems to obtain this behavior are
depicted in the center and right image of Figure 3. After
a principal axis is chosen, the procedure computes bound-
ary conditions on each voxel. For this, the method blurs
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Figure 3. Particle systems following dynamical systems. Effect of the randomness parameter. From left to right, randomness: 0.3,
0.2, and 0.1, respectively.

“

Figure 4. Discrete gradient vector field. The image shows that

the computed vectors follow the exterior silhouette of arbi-

trary figures. For clarity, the image shows only some vectors in
the field.

each resulting volume slice s; and computes the gradient
of the 2D blurred slice at each voxel, obtaining a vector at
each position:

(Vx» Vy) = &s; [x, 5],

where vy and vy are the gradient vector component in x and
v, respectively. The vector that is orthogonal to the gradient

can be used to follow the exterior silhouette. An orthogo-
nal vector to (vy, vy) is (vy, —Vvy). Figure 4 shows the result
of these computations on a sliced model. The resulting dis-
crete vector field adequately follows the exterior silhouette.
The image also shows that the method works on slices with
disconnected regions.

The boundary conditions are chosen if v, or vy are > 0,
while a DS, centered at the center of mass, is employed
on the interior of the slice. With this procedure, it is even
possible to control the boundary region’s thickness, to rep-
resent outer shapes and crusts. This is achieved by varying
the kernel size in the blurring operation.

The process creates a realistic global deformation pat-
tern for the slice (Figure 5). The bubbles will predomi-
nantly follow the 2D slice, but because of the inclusion of
random numbers in the growth process, the bubbles are not
constrained to the actual slice and may switch among slices
and DSs.

The randomness parameter can be used to determine the
homogeneity of the bubbles and orientations. For instance,
a randomness value close to O forces bubbles to tightly fol-
low the DS. This can be used for bread crumbs. A higher
randomness value is suitable for sponges.

Figure 5. Porous slices generated with our method. The image shows that the bubbles follow the boundary conditions on edges,
and the DS in the center, producing global and local natural patterns. The left, top image uses a higher randomness value than other
slices, producing a sponge-like pattern. The left, bottom image was produced with the lowest randomness value.

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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Figure 6. 2D slices with predominantly horizontal (left) and vertical (right) DSs. The image shows that the resulting bubbles produces
patterns adapted to the ratio of each slice.

Figure 7. Bunny-shaped slices showing bubbles following the
center of mass of the slice. Additionally, the separation parame-
ter for bubbles is set to 2.

In addition, this method can be used to model differ-
ent behavior on different regions by defining a different
DS for different slice sets. The resulting porous structures
may show different orientations depending on voxel and/or
slice position.

If desired, the system can be configured to change the
DS depending on the shape of the slice. For instance, if the
width is much larger than the height, a horizontal predomi-
nant DS could be used. The same idea applies if the height
surpasses the width. A threshold ratio value can be used
to set these behaviors. Figure 6 shows the effect of setting
horizontal and vertical predominantly DS.

As a final example, in Figure 7, we show bunny-shaped
slices with bubbles following its center of mass, with
separation among bubbles set to 2. This example demon-
strates that the system can be configured to match different
observable properties of materials (in this case, the visible
distance between bubbles).

4. RESULTS

For all our tests, we employed an Intel(R) Core(TM)
i5-2300 CPU (quad core) with an nVIDIA GTX 480 (480
shader units) GPU, which is a typical standard configura-
tion. In Table I, we show computing times and memory

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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Table I. Modeling times expressed in seconds (mean of 10
runs), where main algorithm denotes the particles growing and
avoiding each other.

Texture resolution 1283 2563 3843
Voxelize and geometry loading  14.69 38.83 85.82
Main algorithm 34.61 155.99  356.35
Total time 49.3 194.82  442.17
Output texture size (MB) 2 16 54
Process memory usage (MB) ~150 ~400 ~1800

Memory usage during the modeling algorithm run and final output size
are also shown.

usage of our modeling procedure. The table presents times
for the different key steps of the algorithm (geometry
loading, voxelization, and particle growing).

Given the computation times for high-resolution 3D
textures it would be impractical to try different parame-
ters at this resolution. The usual approach, then, consists
in computing and selecting different parameter sets at
low resolutions, and computing only one high-resolution
texture.

The table shows that the procedure has low memory
requirements, given that no optimizations are applied (one
texture is used for each purpose, textures are uncom-
pressed, etc.). Future versions of this software could dras-
tically reduce memory consumption.

Currently, the code is written in Python and runs on
a single CPU core. A GPU version of this software may
achieve interactive or real-time performance by paralleliz-
ing the particle growing step.

5. APPLICATION: DIRECT
VOLUME RENDERING

We created a demo application’ that uses the particle sys-
tem described in the previous sections to render bread
and other porous objects using a standard DVR approach.
Figure 8 shows an example of a porous structure, generated

fAvailable at https://www.github.com/rbaravalle/Pysys.
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Figure 8. Our demo application showing a porous structure
rendered in real time.

with our modeling algorithm. The image shows that the
bubbles follow the center of mass of the visible slice.

This application uses a volume texture that is the result
of our modeling method. This texture defines the structure
of the object that is rendered, and a DVR algorithm along

R. Baravalle et al.

with a simple physically based shading model [33] is used
to create the images. Physically based shading parameters
are intuitive and, as shown in the example figures, can be
used to easily represent a wide variety of porous objects.

To illustrate the variability, we created realistic-looking
breads (Figure 13, Figure 14), sponges (Figure 9) and
stones (Figure 10) by simply adjusting the modeling and
shading model parameters. Because the sponge porous
structure is more homogeneous, we set randomness to
0.5. The stones use fewer particles than the other materi-
als, and the renderer uses a higher reflectance and index
of absorption (light does not propagate as in the other
two materials).

5.1. Comparison with Other Models

Artistic generation of porous structures are usually per-
formed using different noise models, such as white noise,
Voronoi noise, Perlin noise [34], and Worley noise [35].
These models generate pores by random value variations
and further smoothing of the resulting volume. This gives
acceptable results when the final pattern does not need
to be fully controlled, given the randomness nature of
the methods.

In particular, white noise does not capture the mesostruc-
ture required for an adequate porous material representa-
tion, because the generated textures are quite unrealistic.
In a similar fashion, Perlin noise produces results that
are too smooth, with statistical patterns unable to form
pores in a flexible manner. These noise models make it

Figure 9. Rendered sponges. For this material, we generated a volumetric texture with a higher randomness value than in the bread
case. The resulting geometry has homogeneous bubble sizes and distributions.

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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Figure 10. Rendered stones. For this material, we used less bubbles in the generation. When rendering, the index of absorption was
incremented to prevent excessive subsurface scattering.

Figure 11. Porous structure simulated with white noise (top) and Perlin noise (bottom). The image shows that the material is
somewhat non-porous (top) or smooth (bottom), making it difficult to control pore size distributions.

difficult to control the size and distribution of the result-
ing pores. Figure 11 shows rendering results using dif-
ferent noise models to generate a bread model. We
could find no parameters that would generate realistic-
looking results.

Voronoi and Worley noise are able to represent pore
sizes and distributions at randomly positioned points in
3D space. Distance functions defined over these points
are used to construct volume densities, generating air/mass
volumes. This may result in acceptable representations
for sponges and other homogeneous or randomly featured
materials, such as stones and cells. Nevertheless, it is a
difficult and an ad hoc task to obtain specific orienta-
tions on the resulting patterns (Figure 12). Other ad hoc

Comp. Anim. Virtual Worlds (2016) © 2016 John Wiley & Sons, Ltd.
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techniques such as texture maps® would be required for
bubble deformation.

More advanced texture synthesis frameworks, such as
Hypertexture [12], are overly general and use a combi-
nation of random noise and user-defined mathematical
formulas to create 3D textures. Therefore, they require
trial-and-error tuning functions and parameters that do not
have an intuitive meaning in order to achieve realistically
looking porous structures.

Our procedure does not require ancillary techniques to
obtain convincing patterns, because the underlying DS

*https://graphics.stanford.edu/wikis/cs348b- 1 1/aharaux/FinalProject.
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Figure 12. Porous structure simulated with Voronoi noise (top) and Worley noise (bottom). The image shows that, while the methods
generates convincing porous structures, users should consider other ad hoc mechanisms to gain flexibility in the resulting patterns
(for instance, to control pore orientations and shapes).

Figure 14. Rendered breads with different geometries and rendering parameters. The image shows that the method targets different
bread appearances.
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captures these behaviors. Moreover, our technique nat-
urally represents and controls the material outer shells.
To reproduce this with any other method discussed here,
it will be necessary to consider further ad hoc mecha-
nisms, requiring extra computing resources. This implies
that our method reduces modeling times and complex-
ity. The resulting method is easy to parametrize and fully
automatic, allowing not only programmers or computer
graphics experts but also artists to employ the technique.

6. DISCUSSION

Our modeling algorithm convincingly represents the geom-
etry of porous materials without introducing complex
intermediate processes (capture, mesh generation, pre-
computation, post-processing). There are few previous
approaches to porous modeling in computer graphics. An
example is [27], but comparisons with this technique could
not be established because key details are not explained
(e.g., computing times and artist input).

Computing times for modeling are in the order of min-
utes (less than a minute for low-resolution textures). This
is acceptable because the process is fully automatic, and
the user only needs to care about selecting a very small
set of parameters such as the outer 3D structure and the
global appearance (amount of particles, texture size, etc.).
The method takes care of all the modeling process details
(global and local positioning, etc.).

Most of the computations occur during the parti-
cle growth phase. A parallel version of this algorithm
could parallelize this computation, greatly reducing the
computation times. Also, the method has low memory
requirements, which can be further reduced with careful
algorithmic considerations.

The modeling algorithm is flexible enough to create dif-
ferent materials like bread, sponges, and stones, by chang-
ing only a few parameters. Other materials such as pizzas
and cheeses can be implemented in the same way, allowing
to manage multiple materials using the same method. We
choose to keep the DS set as simple as possible, represent-
ing the basic shapes observed in porous materials. Other
complex patterns may be obtained using more involved DS
equations. Nevertheless, given the DS and the boundary
conditions defined, it was possible for us to obtain the most
common natural shapes of porous materials.

Furthermore, the volume representation method allows
real-time cuts in the volumes. This feature is clearly use-
ful in many real-time applications, for instance, in video
games. We also showed that the resulting model is suited to
create realistic renderings of these materials in a real-time
application using commodity hardware.

So far, with current off-the-shelf hardware, our method
is limited in the final 3D resolution of the material when
real-time applications are required. In other words, drastic
close-ups to the structure could lead to a frame-rate drop.
This limitation is tied to the GPU texture size and will
be eventually circumvented with the next generations of
graphic hardware.
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7. CONCLUSIONS

We proposed a procedural generation model for porous
materials. The method is based on a particle system that
emulates a self-avoiding growth process within a volume,
by means of DSs. A numerical simulation is computed to
solve the resulting set of equations that represent the behav-
ior of the DS. The particles avoid each other and grow by
following the streamlines and the exterior silhouette of the
material. The modeling algorithm is simple and crisp. The
resulting 3D textures adequately represent porous materi-
als, which can be used directly in a DVR renderer. We
showed that we can create realistic renderings of porous
materials like bread, sponges, and translucent stones in real
time using standard off-the-shelf hardware. The results are
suitable for application in several areas, such as medicine,
video games, and photorealistic rendering. Our proposed
technique is simple and flexible and does not share the
drawbacks of current state-of-the-art methods, such as
complex capture processes or mesh generation. We are cur-
rently developing methods for simulating other materials
with different mesostructures, such as cheeses and bones.
A main continuation of this work will be the parallelization
of the modeling algorithm, (e.g., by employing OpenCL).
Also, we will validate our method phenomenologically
using measurements from actual porous materials. Lastly,
we plan to explore other applicable rendering methods
(such as surface representations or bidirectional texture
functions [5]) and the requirements they may impose on
the modeling output.
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