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Figure 1: Ambient Occlusion without shading. We can render images at 320 fps (1280x720 resolution, 294 MPixels/s) on a GTX 770.

Abstract

We accelerate volumetric obscurance, a variant of ambient occlu-
sion, and solve undersampling artifacts, such as banding, noise or
blurring, that screen-space techniques traditionally suffer from. We
make use of an efficient statistical model to evaluate the occlusion
factor in screen-space using a single sample. Overestimations and
halos are reduced by an adaptive layering of the visible geome-
try. Bias at tilted surfaces is avoided by projecting and evaluating
the volumetric obscurance in tangent space of each surface point.
We compare our approach to several traditional screen-space am-
bient obscurance techniques and show its competitive qualitative
and quantitative performance. Our algorithm maps well to graphics
hardware, does not require the traditional bilateral blur step of pre-
vious approaches, and avoids typical screen-space related artifacts
such as temporal instability due to undersampling.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: SSAO, Summed Area Tables, global illumination

1 Introduction

Efficient computation of global illumination is still one of the hard-
est problems in computer graphics. In consequence, real-time ap-
proximations often make very simplifying assumptions. Ambient
Occlusion (AO) is an example and focuses on the evaluation of am-
bient light reaching a point on a surface [Landis 2002] by consid-
ering only local geometry as occluders in the scene. Attenuating
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the ambient light term based on local occlusion creates important
contact cues improving overall depth perception.

Historically, AO was first applied in static scenes where its effect
could be baked into occlusion maps [Landis 2002]. However, this
approach does not work well for dynamic scenes and would need
be applied per frame. In recent years, advances in graphics hard-
ware and the development of screen-space approximations have led
to real-time implementations of AO [Mittring 2007; Shanmugam
and Arikan 2007]. These screen-space ambient occlusion (SSAO)
techniques compute the amount of occlusion as a postprocessing
pass based on a depth image from the camera’s point of view. Tra-
ditionally, the occlusion factor is approximately estimated per pixel
using a few samples and smoothed using a subsequent bilateral blur
step. Most current rendering engines incorporate such solutions.

We aim at an approach that has the low computational complexity
of screen-space ambient occlusion (SSAO) approaches, but avoids
the usual drawbacks, such as banding, noise or blurriness caused
by undersampling. In order to eliminate these artifacts, we have to
account for all of the local geometry visible in screen-space. To this
extent, we reverse the typical order of operations applied in exist-
ing SSAO approaches. Instead of taking samples and blurring the
result afterwards, we compute a statistical model of the surround-
ing geometry at a pixel’s world position and use it directly for AO
computation. Because we do not use traditional sampling there is
no need for randomization or blurring of the result [Mittring 2007].

Specifically, our contributions are:

• A screen-space ambient-occlusion approximation, evaluated
using a single sample;

• An adaptive depth-slicing technique to efficiently compute
this model;

• A GPU-friendly and highly-parallel implementation

In the following, we introduce an approximation for volumetric ob-
scurance and how to compute it efficiently (Sec. 3) and describe
how to improve quality via depth slicing (Sec. 4). For acceleration
purposes, we introduce an adaptive technique (Sec. 5) and remove
bias in the result by incorporating the surface normal into the com-
putation (Sec. 6). We introduce important optimizations, like ap-



proximate summed-area tables (SAT) and differential SAT compu-
tation (Sec. 7). We evaluate and compare our approach to common
screen-space ambient occlusion and volumetric-obscurance tech-
niques (Sec. 8), before concluding (Sec. 9).

2 Related Work

The idea of approximating ambient illumination to account for local
geometry was first described by Zhukov ([Zhukov et al. 1998]) and
Landis [Landis 2002] showed the importance of AO in improving
depth perception through contact cues and soft shadows. [Luft et al.
2006] employed a similar idea for artistic purposes. AO has since
gathered a significant amount of interest resulting in numerous tech-
niques. The algorithms can be divided in roughly two categories,
geometry-based and screen-space ambient occlusion.

Geometry-based ambient occlusion incorporates all available
geometry into the AO computation. Geometrical data in form of
surface elements can be conveniently grouped in a hierarchy based
on their distance to evaluate local AO [Bunnell 2005]. Alterna-
tively, AO contributions can be scattered by each primitive via sur-
rounding occlusion volumes [McGuire 2010]. While providing
high-quality results the performance depends heavily on the geo-
metrical complexity and AO radius. Density information can also
be used for computing AO ([Hernell et al. 2010], [Grottel et al.
2012]) in the context of volume rendering.

Screen-space ambient occlusion techniques compute occlu-
sion based on information in the depth buffer leading to (almost)
geometry-independent evaluations. Such an approach was intro-
duced by Crytek [Mittring 2007]. They sampled a sphere around
a pixel’s world position and reprojected the samples into the depth
map to determine if they were occluded by geometry. For real-
time performance the approach requires aggressive undersampling,
which subsequently leads to noise artifacts that require an addi-
tional and costly bilateral blur step [McGuire et al. 2012].

Line sampling [Loos and Sloan 2010] improved upon the Cry-
tek implementation by taking samples in the 2D projection of
the sphere and integrating over line segments, thus computing
the amount of geometry inside the sample sphere. Concurrently,
[Szirmay-Kalos et al. 2010] presented a volumetric approach for
estimating ambient occlusion based only on screen space depth val-
ues. Horizon-based AO [Bavoil et al. 2008] aims at finding a maxi-
mum horizon angle at which light can reach the sample point. Rays
in randomized directions are marched and the maximum elevation
angle of these are averaged to estimate the occlusion. Line-sweep
AO [Timonen 2013] computes oclussion along a set of principal di-
rections and is efficient due to sharing samples between the screen
pixels aligned along these directions.

Statistical approaches aim at improving undersampling issues
which arise when balancing performance and quality in SSAO-
oriented methods. An example is the use of Summed-area tables
(SAT), which are an efficient data structure to compute local aver-
ages of the depth values per pixel that can be used to approximate
AO [Slomp et al. 2010; Dı́az et al. 2010]. However, naively apply-
ing SATs leads to strong artifacts at depth discontinuities (halos or
overestimations). We build upon these approaches and show how
to remove such artifacts using adaptive depth layers.

Multiple depth layers have been used to improve AO and global
illumination effects. Vardis et al. [2013] use depth information from
different views to improve the estimate of ambient occlusion. Deep
screen space [Mara et al. 2014] is a technique to create a depth

buffer containing non visible fragments that can be used to com-
pute ambient occlusion and indirect illumination effects. Deep G-
Buffers [Nalbach et al. 2014], which contain the first two visible
layers in the scene, use the enhanced geometrical information to
compute global illumination effects. Altough our layering scheme
only uses visible surfaces, applying our method to multiple depth
layers could be explored in the future.

3 Statistical Volumetric Obscurance

3.1 Background

AO improves upon standard ambient illumination terms in popular
shading models by capturing variations due to subtle shadowing
caused by surrounding geometry. The amount of ambient occlusion
at a point x on a surface is related to the ratio of outgoing rays that
are able to leave a sample volume as opposed to rays that are being
blocked by surrounding geometry (Fig. 2a) [Loos and Sloan 2010].
AO is formally defined as:

AO(x,~n) =
1
π

∫
Ω

ρ(d(x, ~ω))~n ·~ωd~ω , (1)

where x is the position in the scene, and ~n the normal at x. Here,
Ω represents the sample directions, usually a surface aligned hemi-
sphere, and d is the distance to the first intersection.

The fall-off function ρ is used to simulate rays with a limited extent
to model only local occlusion. In practice a piecewise constant,
linear or quadratic fall-off function is used.

While an exact evaluation of AO based on this definition can be
computationally costly, different models exist that can approximate
the correct result. In particular, Volumetric Obscurance (VO) [Loos
and Sloan 2010] estimates the amount of occlusion using the geo-
metric density within a surrounding sample sphere S:

VO(x) =
1

Vol(S)

∫
S

ρ(d(x,s))O(s)ds , (2)

where the occupancy function O is 0 if s is inside of the geometry
and 1 otherwise and Vol(S) is the volume of the sample sphere S.

The assumption used by the VO model is that if a large portion
of the sample sphere is inside a closed geometry, it will be less
probable for ambient light rays to reach x. While this intuition does
not relate to a physical process, results are similar to AO in practice.

The normal ~n, if known, can be used to restrict S to a hemisphere,
thus eliminating occlusion caused by geometry below the sample.

3.2 Overview of our method

The method we will present is based on a statistical estimation of
volumetric obscurance. For each pixel we define a sampling vol-
ume and approximate the amount of space in that volume which is
inside the geometry of the scene. We present a model that uses that
approximation to compute volumetric obscurance.

Initially we show how to efficiently average the depth of all pixels
within a screen aligned sample box centered at each pixel. That
sample box may contain pixels representing distant points in 3D
space, which will wrongly influence the average depth value. We
show how to solve this problem by separating the pixels in different
layers and computing a different average per layer.

Finally, we demonstrate how to account for the surface normal by
shifting our focus into computing the average of the view space
pixel coordinates and projecting the average to the surface normal.
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Figure 2: Screen Space Ambient Occlusion: (a) SSAO at a sample point is defined by the ratio of rays that can escape the sample volume.
Point sampling (b) and line sampling (c) approximate local ambient occlusion by sampling points within a sample volume. Horizon-based
sampling (d) marches in randomized directions to compute the maximum angle at which rays can escape the sample volume. (e) Volumetric
obscurance approximates ambient occlusion by computing the percentage of the sample volume that is inside a closed geometry.

3.3 Our Model

SSAO techniques, such as the one presented in this paper, work
solely on the depth map of the rendered image, optionally with an
additional normal map. Our solution is based upon the VO model
but introduces some important changes that make it more suitable
for current graphics hardware and avoids sampling artifacts.

First, we use a sample box (Fig. 3a) instead of a sample sphere to
estimate geometric density. The VO assumption is the same, i.e. we
determine the percentage of the box which is filled with geometry
and assume that it correlates with the amount of occlusion.

Second, we estimate the 3D obscurance function in Eq. (2) with a
2D version as follows. We assume that the geometry in the scene is
composed of a single surface whose depth is a continuous function
G : R2→ R with G(x,y) = dx,y where the values at each pixel po-
sition x,y are stored in our Z-buffer. Therefore, every sample point
whose depth is greater than what is stored in the Z-buffer is assumed
to be occupied, and conversely each sample point whose depth
value is less than the corresponding z-value in the depth buffer is
deemed unoccupied. The key observation is that we can average
the depth function G(x,y) around a sample point and use this value
to approximate the occupancy.

The mean value µ of G over a domain V is:

µ =
1

AV

∫
V

G(x)dx , (3)

where AV is the area of the integration domain. The mean value
µ(x) of the screen space depth within a sample box is then used
to estimate the geometric occupancy around a pixel (Fig. 3a). Let
zB(x) be the depth value of the bottom face of the sample box and
zT (x) that of the top face. As we are only interested in the relative
amount of occupancy, we can cancel AV out and define our statisti-
cal volumetric obscurance (StatVO) model as:

StatVO(x) = ψ

(
zB(x)−µ(x)
zB(x)− zT (x)

)
. (4)

The function ψ(x) clamps the final value to 0 for negative values
of x and behaves linearly for values in [0,1], but will drop off to
0 with a user-defined slope for values greater than 1 (Fig. 3a). In
consequence, the VO value results in zero, if the average depth is
too far from the surface value, which reflects that the considered
sample points fall outside the sample box.

The extent of the sample box in screen-space is computed based on
its world position (the screen-space extent of sample boxes should
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Figure 3: Statistical volumetric obscurance: Our method (a) ap-
proach computes the volume integral of a box as an approximation
of ambient occlusion. The graph at the right shows how occlusion
increases as the average µ rises, after the average leaves the sam-
ple box, occlusion falls-off back to zero.

be large nearby and smaller far away). To derive the size of its rect-
angular projection, we rely on the pixel’s linearized depth value.
Next, to estimate the occlusion, we need a way to quickly com-
pute the mean depth value inside such screen-aligned rectangle of
arbitrary size. To this extent, we make use of Summed-Area Ta-
bles [Crow 1984]. They allow us to retrieve, at a constant cost, the
average in an arbitrary rectangular region around a pixel. In each
pixel, they store the sum of all pixels in the upper left quadrant of
the texture. The construction can be done using a fast recursive
algorithm[Hensley et al. 2005]. To query the average of a rectan-
gular region, the sum of all its interior pixels can be retrieved by
combining the values from its four corners.

Approximating the VO via a mean value implies that the fall-off
function in Eq. (2) cannot be applied to each sample separately.
Furthermore, note that in Eq. (4) the sample box is not restricted in
the z coordinate, meaning that sample points outside of the sample
box influence µ as well. We would want to reduce the influence of
samples that are far from the surface point. In the next section, we
explain how to incorporate this idea.

4 Depth Layering

Not applying a fall-off function to each sample when computing
volumetric obscurance leads to an overestimation at depth discon-
tinuities, which leads to halos (Fig. 6a). To counteract overestima-
tion, we divide the depth map into m uniformly arranged layers or-
thogonal to the viewing direction based on the maximum and min-
imum view-space depths. Each depth pixel is assigned to the layer
which overlaps with the corresponding depth value (Fig. 4). Non-



L 1

V
μ L 2

L 1

V

μ1

μ2

(a) (b)

Figure 4: Depth Layering: While a single layer will result in a sin-
gle average over all geometry (a), we can slice our scene in multiple
depth layers to obtain averages for each layer separately (b).

assigned pixels are set to 0. The depth buffer is processed and split
among these multiple layers. During the splitting operation, we use
an additional (color) channel to keep track of sample/pixel validity,
i.e., the channel is one if a depth sample was assigned to the cor-
responding pixel and zero otherwise. We then generate SAT’s for
each layer and channel separately. Contributions from each layer Li
overlapping with the sample volume V are weighted by the corre-
sponding sample count ni (the number of samples assigned to Li),
to account for the missing values, and combined into a final obscu-
rance value StatVOLayered(x) as follows:

StatVOLayered(x) =
1

∑i∈V ni(x) ∑i∈V StatVOi(x)ni(x) , (5)

where StatVOi is the statistical volumetric obscurance defined in
Eq. (4) computed on layer Li.

Because of function ψ in Eq. (4), depth slices with depth values
significantly different from the surface depth will have no influence
on the final computed obscurance. However, the computational ef-
fort is linear in the number of layers m and larger scenes require a
high number of depth layers, resulting in computation times that are
no longer competitive compared to other real-time AO techniques.
For example, we found that the Sibenik cathedral requires around
64 layers for good results (Fig. 6e).

5 Adaptive Depth Slicing

To improve upon the linear depth-slicing approach, we propose to
use depth layers which adapt to the local geometry. We drew in-
spiration from higher-dimensional filtering approaches [Gastal and
Oliveira 2012] as our technique also builds on a recursive process
that partitions the current depth map of a layer into two disjoint
sets in each recursion. The intuition behind this step is that as long
as pixels with very different depth values are further apart than the
screen-space size from the corresponding sample area then they do
not influence each other during the obscurance computation.

Our algorithm Fig. 5) works as follows: Initially we have the orig-
inal depth map and its corresponding SAT. Using this SAT, we can
compute the average depth value µ around each pixel, as described
in Sec. 3, which amounts to having a smoothed version of the orig-
inal depth map. We then assign each depth value of the original
depth buffer to the upper or lower layer based on its relative depth
value compared to µ , hereby often successfully separating locally
far and near samples. The intuition behind this approach is that
around depth discontinuities, pixels closer to the camera will all
have a depth value smaller than the average, and pixels further away
will have a depth that is greater than the average. Once each pixel is

L2

L1

smoothed Z-bu�er

V

μ1

μ2

Figure 5: Adaptive Depth Slicing: In each recursion a smoothed
Z-buffer is constructed, each depth sample is either assigned to the
upper (red) or lower layer (green).

(a) 1 layer (b) 64 layers (c) 4 adaptive layers

(d) 1 layer, 1 ms (e) 64 layers, 55 ms (f) 4 adaptive layers, 2-
3 ms

Figure 6: Comparison: Using a single layer (a) results in dark
halos at depth discontinuities (d). Splitting the scene into multiple
layers solves this problem. (b) However, this impacts performance
(e). Using adaptive slicing adds additional layers only at depth
discontinuities (c). This allows us to eliminate halos and achieve
good performance (f).

assigned to one of the two layers, we compute a new SAT for each
layer. As in the uniform depth slicing approach (Sec. 4), we keep
track of the amount of active pixels by using an additional chan-
nel in these new SATs as well. Once we have the two new SATs,
the process can be repeated for each newly created layer in order to
further differentiate samples.

During rendering we simply evaluate all layers using Eq. (5). The
fall-off function ψ automatically adjusts the influence of each layer,
hereby reducing the influence of samples outside the sample box.

The adaptive depth slicing dramatically reduces the number of re-
quired layers. As few as four adaptive layers can achieve results
that are comparable to the naive 64 uniform layers implementation
(Fig. 6e and 6f) for our test scenes.

6 Surface Normal Incorporation

Until now, the sample box was always aligned with the viewing
direction. However, when viewing a surface from a grazing angle
a bias is introduced into our VO approximation when parts of this
surface are hidden in the depth map by pixels closer to the cam-
era (Fig. 7a and b). In Fig. 7a the mean value of layer L1 (green) is
only slightly above the sample position. In Fig. 7b the mean value is
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Figure 7: Normal Integration: (a) and (b) Considering only the
hemisphere/hemibox around a surface point in the viewing direc-
tion leads to different occlusion results depending on the slope of
the surface. (c) Projection of the mean of all depth samples in 3D
space onto the surface normal removes this bias.

higher since the object in layer L2 hides a part of the surface under-
neath. Performing VO computation only for the positive half-space
in the direction of the surface normal can enhance the perception
of finer scale details [Loos and Sloan 2010]. We make use of the
surface normal by extending our approach to 3D and orienting the
sample box, so its bottom side is aligned with the surface (Fig. 7c).

After the adaptive layer computation from Sec. 5, we reproject each
depth value in each layer into view space to acquire its 3D position.
We save the results in RGB maps and compute the corresponding
SATs for each. Instead of computing an average depth value, we
now compute the average position x̄ of all reprojected depth sam-
ples and project it onto the surface normal ~n, which conveniently
reveals the average height of all samples along the surface normal:

∆µ = (x̄−x) ·~n , (6)

where x is the surface position. The oriented statistical surface ob-
scurance StatVOi per layer Li is then:

StatVOi = ψ

(
∆µ

h

)
, (7)

where h is the height of the sample box. Eq. (5) is used to compute
the final obscurance value.

Further improvement regarding the approximation quality can be
achieved by evaluating four quadrants of the sample region around
the pixel separately. The region can be split into four equally-sized
parts, for which the result is evaluated independently, by retrieving
nine (corners, midpoints, center) instead of four values from the
SATs. The final VO value is then computed by averaging the results
(Fig. 8). The overall cost increases by roughly 25% to 40%.
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Figure 8: Left: One region, right: four quadrants. All other images
in the paper rely on a single region

(a) Full resolution (b) Half resolution (c) Quarter resolution

Figure 9: Approximate SATs
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Figure 10: Differential SAT Computation: We can spare the com-
putation of one depth layer (L) and one SAT (S) in each partitioning
step as they can be reconstructed from their parents and siblings.

7 Optimizations

We introduce two important performance improvements for our
technique; approximate SATs and differential SAT computation.

7.1 Approximate SATs

The most costly computation of our algorithm is the SAT cre-
ation. While we experimented with other prefiltering techniques
such as Mipmaps, N-Buffers [Décoret 2005] or Y-Maps [Schwarz
and Stamminger 2008], SATs provided the highest quality.

Instead of computing full-resolution SATs, we downsample the in-
put by a factor of 2-4 in both width and height by averaging the
depth values, reducing computation times by a factor of 4 to 16
with little impact on quality. We then upscale the low-resolution
SATs with linear interpolation to approximate the full resolution
input. It is important to note that the additional channel used for
sample counting must be handled carefully during downsampling to
keep track of the sample count. As linear interpolation is hardware-
accelerated, upsampling the SATs is very fast. Fig. 9 shows a com-
parison between using a full-resolution SAT and downsampled ver-
sions. The SAT is queried with sample rectangles, which makes this
acceleration suitable for our context. For other sampling strategies,
such a solution can be harmful (compare supplementary material).



7.2 Differential SAT Computation

Let L0 be the (downsampled) original depth map, and L1,0 and L1,1
be the first two adaptive sublayers resulting from partitioning L0.
Each subdivision of a layer requires the computation of a corre-
sponding SAT S. An important observation here is that while the
samples contained in L0 are distributed among the sublayers L1,0
and L1,1, their total sum does not change. Thus, subtracting SAT
S1,0 from S0 results in S1,1 (Fig. 10) removing the need to compute
it explicitly. Alg. 1 shows the pseudo-code for the SAT generation
routine of four adaptive layers when using differential SATs.

For four adaptive layers, we need to compute only four out of seven
SATs explicitly (for more layers the ratio approaches 1:2). During
rendering, we compute the value of the missing SATs on-the-fly by
subtracting all ancestral and the sibling layer from the root SAT S0.
The pseudo-code in Alg.2 shows how to query the SAT for all four
leaf layers S2,0,S2,1,S2,2 and S2,3 given only S0,S1,0,S2,0 and S2,2.

8 Results

(a) 11 line samples (1.47ms) (b) StatVO (0.93ms)

Figure 11: Comparison to Line Sampling: Both figures evaluate
the occlusion at full resolution of 1280×720. Line sampling (a)
using 8 samples with a 4×4 randomization kernel with an 8×8 bi-
lateral blur applied. StatVO (b) with 4 adaptive layers with quarter
resolution SATs.

We have implemented our technique using OpenGL/C++. All
statistics were measured at 1280×720-pixel resolution on an Intel
Core i5 4590 with 8GB of RAM and an NVIDIA GTX 770 graphics
card. We implemented the SAT generation algorithm as an OpenGL
compute shader [Sellers et al. 2013].

Performance Table 1 shows a detailed performance analysis of
our algorithm with four adaptive layers and using full resolution
SATs and half resolution in width and height. As the SAT computa-
tion is the most costly part of our algorithm, performance increases
by a factor of four if width and height are halved. We found that in
many scenes, the overall quality loss was small even when reducing

Algorithm 1 Pseudo-code to compute the needed SATs with 4
adaptive layers.

Given: depth buffer D0

S0 ← computeSAT(D0)
D1,0← partition(D0,S0)

S1,0← computeSAT
(
D1,0

)
D2,0← partition

(
D1,0,S1,0

)
D2,2← partition

(
D1,1,S1,1

)
S2,0← computeSAT

(
D2,0

)
S2,2← computeSAT

(
D2,2

)

Algorithm 2 Pseudo-code to compute the areas in a two level dif-
ferential SAT hierarchy

Given: S0, S1,0, S2,0, S2,2 computed previously

A0 ← sampleSAT(S0)
A1,0← sampleSAT

(
S1,0
)

A1,1← A0−A1,0
A2,0← sampleSAT

(
S2,0
)

A2,1← A1,0−A2,0
A2,2← sampleSAT

(
S2,2
)

A2,3← A1,1−A2,2

Step Tfull (ms) Thalf (ms) Speed-up

Downsample depth buffer 0.13 0.05 ×2.6
Compute root SAT 1.40 0.32 ×4.4
Compute first level SAT 1.86 0.43 ×4.3
Compute second level SATs 3.72 0.84 ×4.4
Evaluate StatVO 1.65 0.50 ×3.3

Total 8.86 2.14 ×4.1

Table 1: Performance evaluation: Breakdown of computational
cost of our algorithm for full resolution SATs and half resolution
SATs when using 4 adaptive layers.

the resolution along each axis by a factor of four (Fig. 9). Aggres-
sive downsampling can result in temporal flickering around depth
discontinuities due to undersampling when the camera moves.

Memory requirements For our four final SATs, we use four
32bit floating point channels, the first three are used to store view-
space coordinates and one is used to mark valid samples in each
layer. When computing SATs in full HD, using quarter resolution
in width and height, we require a total of 8MB of memory.

Comparison to other techniques We compare our technique to
the classic point and line sampling SSAO techniques, which are the
most commonly used [Mittring 2007; Loos and Sloan 2010]. By
choosing a very high sample count (256 point samples per pixel),
we additionally generated a reference image for volumetric obscu-
rance. In Fig. 13, we show that our technique can generate results
that are comparable in quality.

In Fig. 12, we compare our technique to point and line sampling.
We chose the number of samples so that all approaches produce vi-
sually similar quality. Using a quarter resolution SAT our approach

(a) VO reference (b) StatVO

Figure 13: Comparison to a Reference VO: (a) Reference from
256 point samples without a randomization kernel or a blur filter.
Our method (b) shows comparable results using 4 adaptive layers
and full resolution SATs.



(a) 17 point samples (2.0ms) (b) 12 line samples (1.7ms) (c) StatVO (1.6ms)

Figure 12: Comparison to Point and Line Sampling: (a) uses a point sampling approach with 17 samples and a 4×4 randomization kernel,
occlusion is evaluated at half resolution and a bilateral upsampling with 7× 7 blur kernel is applied. (b) achieves similar results but only
uses 12 line samples. In (c) we evaluate occlusion at the full resolution using 4 adaptive layers with quarter resolution SATs.

(a) 16 point samples (0.77ms) (b) StatVO (0.65 ms)

Figure 14: Comparison to Point Sampling:(a) shows a close-up
of a point sampling configuration were occlusion is evaluated at
half resolution, using 16 samples with a 4×4 randomization kernel.
The result is upsampled and an 8×8 bilateral blur filter is applied.
(b) StatVO evaluated at full resolution with 4 adaptive layers and
quarter resolution SATs.

is slightly faster than both. Increasing the AO radius our perfor-
mance stays the same, whereas the performance of line and point
sampling decreases, due to an increase of the required samples and
bilateral blur radius, which is mandatory to diminish the increasing
undersampling artifacts. This means that our algorithm scales well
to higher resolutions compared to point and line sampling (Note
that we used a relatively small image resolution of 1024×768 pix-
els and a similar sample region on a higher resolution image would
have to be scaled up).

If only few samples are computed for point or line-sampling (e.g.,
for very high performance), visible undersampling artifacts appear
(Fig. 14). Our approach does not suffer from undersampling and
leads to more details, e.g., on the wall.

Fig. 15 shows a comparison of our method to scalable ambient oc-
clusion (SAO) [McGuire et al. 2012], which is currently one of the
fastest methods for computing ambient occlusion. SAO exhibits a
large amount of blurring due to its usage of mipmapping during
sampling and a bilateral blurring step. Although our approach is
around 50% slower, it produces crisp results at all depths. Further,
our approach does rely on SATs instead of mipmaps, which leads
to an additional cost, but proved more stable for animation.

Limitations of screen-space approaches The approach we
present is subject to some of the usual limitations associated with
screen space AO methods, namely the need for a guard band and
the inability to account for surfaces occluded from the view. Due

(a) Scalable Ambient Occlusion

(b) StatVO

Figure 15: Comparison to Scalable Ambient Occlusion: (a)
shows part of a scene rendered with SAO, (b) shows the same scene
rendered with our approach using quarter resolution SATs. Our
method does not exhibit blurring despite using downsampled SATs.

to the statistical nature of our approach, the contribution of thin
surfaces parallel to the viewing direction may be underrepresented
in the AO computation. Also, as stated previously, downsampling
the depth buffer and SATs too aggressively may result in a small
amount of temporal flickering. Nonetheless, even when reducing
resolution by a factor of 1/4 along each axis, in most areas of the
image, there are no visible differences. This result stems from our
algorithmic design. An adaptive downsampling strategy could be a
promising direction for future research.

9 Conclusion

Statistical Volumetric Obscurance is an alternative to traditional
screen-space ambient occlusion, which does not rely on typical
sampling. Due to the usage of a sample box, the evaluation of local
obscurance is reduced to a simple mean-value computation over the
sample area, which is efficiently computed on the GPU using spe-
cialized summed-area tables. Previous approaches in this direction
suffered from artifacts such as halos. The adaptive depth slicing
avoids these and preserves fine-scale features, leading to a quality



similar to previous approaches with many more samples.

For best results the amount of nearby depth discontinuities should
be limited. An extreme case, like looking along a row of aligned
pillars, breaks this assumption and small halos and dark creases are
introduced. Still, our method performs well in these cases (com-
pare accompanying video). Locally adaptive layering would be an
interesting future work to address such issues.

As with any SSAO technique, the depth map represents only the
visible geometry, whereas important information of the overall
scene is lost. Rendering the occluded geometry into the depth lay-
ers after they have been created would allow us to incorporate even
these occluded parts for more precise results beyond the capabilities
of traditional SSAO techniques.
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