
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

Compressed Multiresolution Hierarchies for
High-Quality Precomputed Shadows

Leonardo Scandolo, Pablo Bauszat, and Elmar Eisemann

Delft University of Technology, Netherlands

Figure 1: Left: High-quality shadows in a static large-scale environment rendered in 1 millisecond using a 32-bit shadow map with a
resolution of 1.048.576 x 1.048.576 pixels. The shadow map is compressed from four terabytes down to 160.6 MB (26124:1 ratio) without
loss of precision. Right: Precomputed soft-shadows from a high-detail model using 2.048 coherent shadow maps, each with a resolution of
2.048 x 2.048 pixels, rendered with 32 samples in 14 milliseconds and stored in 145 MB (227:1 ratio).

Abstract

The quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme
for high-resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can com-
pactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conserva-
tively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression
rates, avoids quantization errors, exploits coherency along all data dimensions, and is well-suited for GPU architectures. Our
approach can be applied for coherent shadow maps as well, enabling several applications, including high-quality soft shadows
and dynamic lights moving on fixed-trajectories.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture, I.4.2 [Computer Graphics]: Compression (Coding)—Exact coding

1. Introduction

High-quality shadows are an important challenge in many real-
time rendering applications in computer graphics. Shadow map-
ping [Wil78] is today’s standard for real-time shadows, however, its
quality is often limited by texture resolution. High-quality shadows
in complex scenes can easily require resolutions up to two orders
of magnitude larger than currently feasible for commodity GPUs.
Adaptive approaches such as Adaptive Shadow Maps [FFBG01] or
Cascaded Shadow Maps [Eng06,ZSXL06] are a common real-time
solution, but come at the cost of reduced run-time performance. As
virtual scenes often consist of large static parts (e.g., terrains or
buildings), precomputing shadows has become a common practice.

Recent advances have shown that precomputed compressed
high-resolution shadows maps can be a competitive alternative.
Such techniques fully handle shadows cast by static objects on
both static and dynamic receivers. Dynamic shadow casters are
handled using standard shadow mapping techniques at run-time,
with the added benefit of not having to render the static parts of the
scene. Unfortunately, conventional image compression is not suit-
able for shadow maps, because lossless encoding (which is required
to avoid light and shadow leaks) does not result in satisfactory com-
pression rates and many techniques rely on run-length encoding,
which prohibits random-access queries. Fast random-access com-
pression of color textures has been investigated in the context of

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

GPU architectures ([DJ98, HIN04, IM06]), but these algorithms
rely on quantizing data or lead to low compression rates (up to
5%), which is insufficient for higher resolutions. Consequently,
custom schemes for shadow-map compression have recently been
proposed. These approaches typically exploit the fact that, in static
scenes, any depth value between the depth of the first and sec-
ond surface underneath a pixel leads to a conservative occlusion
test. However, previous approaches do not fully exploit the data
coherency or rely on depth quantization.

We introduce a novel compression scheme for high-resolution
shadow maps based on multiresolution hierarchies. We propose a
sparsification process, which exploits the concept of dual shadow
mapping (a shadow map for the front faces and one for the back
faces) to create an extremely sparse, but conservative, multireso-
lution decomposition of the original (front) shadow map. This de-
composition is efficiently encoded in a compressed regular tree for
fast random access during run-time. We show that our approach
achieves higher compression rates than all previous approaches,
can be queried with real-time performance, and can be efficiently
built using GPU architectures. Our approach is the first to exploit
coherency along all data dimensions, does not rely on quantization
(maintains full 32-bit precision) and supports shadow maps from
arbitrary light sources. Another benefit is that it naturally incorpo-
rates all information required for hierarchical filtering operations
since it offers a multiresolution representation and every level by it-
self is a complete shadow map. Finally, we show that our approach
can be directly extended from single shadow maps (2D encoding
using quadtrees) to a coherent set of shadow maps (3D encoding
using octrees). Our approach is the first to enable efficient com-
pression of and rendering with high-quality shadow map sets to
produce soft shadows, and moving light sources with known tra-
jectories (e.g., sun lighting).

2. Related Work

We will briefly discuss previous approaches for precomputed com-
pressed shadows and compression of tree hierarchies. For a com-
prehensive overview of real-time shadow generation, we refer to
the surveys of Eisemann et al. [ESAW11] and Woo et al. [WP12].

Compressing with line segments Based on the assumption that
shadows are not cast inside of objects, Woo et al. [Woo92] pro-
posed midpoint shadow mapping as a solution to self-shadowing
artifacts. Midpoint shadow mapping computes a new shadow map,
which represents the intermediate surface lying between the two
surfaces closest to the light source. Since all depth values stay be-
tween the front facing geometry (the surfaces that represent the
original shadow map) and the back facing geometry (the first exit
point out of the object), the resulting occlusion test is conservative.
An extension of this approach is dual shadow mapping [WE03],
where the shadow maps are kept separate and shadow biasing can
be performed adaptively. Based on this concept, Arvo et al. [AH05]
introduced Compressed Shadow Maps (CSM) and showed how to
compress a shadow map by representing each scan-line with a set of
line segments approximating the midpoint surface. This approach
shows that shadow map compression can be understood as signal
compression with a specific spatially-variant bound. Although our

approach can be interpreted as a 2D or 3D extension, finding the ex-
act analytic equivalent in higher dimensions is a significantly more
complex task.

Ritschel et al. [RGKM07] similarly compresses a set of coherent
shadow maps by encoding the depth values of each pixel for all
images by using a set of lines. However, both approaches do not
fully exploit data coherency along all dimensions (e.g., only along
the vertical dimension or "through" the image stack) and, therefore,
cannot achieve optimal compression rates. Additionally, since these
compression schemes are non-hierarchical they do not adapt well
to the underlying data and efficient filtering along dimensions other
than the compression dimension becomes impractical.

Precomputed Voxelized Shadows Recently, Sintorn et al.
[SKOA14] proposed to precompute shadow information for a vox-
elized scene representation in projective light-space, which is effi-
ciently encoded in a 2-bit Sparse Voxel Octree [LK10]. The octree
is further compressed by subtree merging using a Directed Acyclic
Graph (DAG) [KSA13]. The initial compression and construction
performance was improved and resulted in the current state-of-the-
art compression method for precomputed shadows [KSA15]. Un-
fortunately, the voxelization process leads to depth quantization
and, although, the information is encoded hierarchically, it is not a
multiresolution representation and fast filtering requires additional
memory, almost doubling the size of the octree. Furthermore, the
extension to shadow map sets is difficult since the compression is
only efficient in the projected space of the light source.

Tree Compression A large body of research exists for efficient
tree-based encoding of multiresolution hierarchies (e.g., [Woo84,
Sam85, LH07]). Unfortunately, our tree must support random ac-
cess and exhibits certain uncommon characteristics, making it dif-
ficult to apply most previous techniques. However, to address the
overhead introduced by storing topology information, we utilize
the pointer compression technique proposed by Lefebvre et al.
[LH07] and efficiently encode tree pointers using 16-bits. We do
not employ any vector quantization [GG91,CCG96,KE02] or other
optimizations to the stored depth values themselves. Our results
demonstrates that even without such data changes, our approach
outperforms previous compression approaches, while maintaining
full 32-bit depth precision.

3. Compressed Multiresolution Hierarchies

Multiresolution decompositions of images (e.g., wavelets [Mal89]
or quadtree images [Sam84]) split features into components of dif-
ferent scales, typically storing homogeneous parts at coarser levels
and details at finer levels. In consequence, finer levels (which con-
tain more coefficients) are usually sparse, and coefficients are small
if they are encoded as differentials to previous levels. Lossy com-
pression exploits this characteristic and removes small coefficients
assuming their influence to the composed image is low. However,
for lossless compression all coefficients, independent of their mag-
nitude, have to be considered. This results in decreased sparsity and
diminished compression (Fig. 2, left).

Our key idea is to compress an alternative representation of the
shadow map that is more homogeneous, but still conservative. Our

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Figure 2: Left: A multiresolution decomposition of a shadow map requires many coefficients (red) at finer levels in varying regions and
is typically not sparse. Middle: Using dual shadow mapping, an intermediate surface (green) can be found between the shadow map (red)
and the auxillary second-surface shadow map (blue). Here, the intermediate surface represents a linear, conservative approximation of the
shadow map by a set of axis-aligned planes. Choosing these planes to represent common depth values for many pixels results in a more
homogeneous occlusion surface. Right: A significantly sparser multiresolution decomposition encoding the set of axis-aligned planes. The
overlayed quadtree shows the encoding of coefficients. Inner nodes are represented by green circles, while leaf nodes are marked as yellow.
Note the empty inner nodes (white circles) which are required to encode the topology information, but do not store any depth values.

goal is to find new depth representatives for each pixel in order
to increase the sparsity of the hierarchy, but such that a conserva-
tive depth test remains possible. This is achieved by choosing val-
ues inside the boundaries defined by the first entry and exit surface
points. To compute these bounds, we employ the concept of dual
shadow mapping (Fig. 2, middle). As a whole, the procedure can
alternatively be interpreted as the compression of an image with a
spatially-varying error bound defined by an interval that must be
met to maintain lossless compression. For fast random-access dur-
ing run-time, we encode the sparse decomposition using a com-
pressed quadtree (Fig. 2, right).

For non-watertight or one-sided objects, the upper and lower
bounds of the depth interval need to be set to the depth value of
the entry surface to ensure a conservative depth test. Although this
reduces compression capability, our technique still handles these
cases correctly and no artifacts are introduced.

In the following, we will first propose two greedy construc-
tion methods for finding sparse decompositions from conservative
depth bounds. Then, we cover efficient encoding and traversal of
the sparse representation using a compressed quadtree. Finally, we
discuss shadow map filtering and propose an optimized traversal
technique to significantly reduce filtering costs. While this section
focuses on single shadow maps only, we will demonstrate in Sec. 4
how to extend our approach to a set of coherent shadow maps using
a compressed octree.

3.1. Construction

Our first task is to define the allowable depth interval for each pixel.
While the lower depth bound is defined by the original shadow
map, the upper bound is determined using the second layer obtained
via depth peeling [Eve01].

If the scene contains intersecting watertight objects, we can even
further exploit the compression potential by ignoring surfaces in-
side of another objects. To exemplify this point, one can imagine

each shadow map pixel corresponding to a ray cast from the light
source. For each ray, one can track the encountered surfaces with a
counter while advancing in the scene. The counter is incremented
for each front-facing surface and decremented when a back-facing
surface is encountered. The first intersection corresponds to the
minimum bound of the allowable depth interval. After that, when
the counter reaches zero, the ray has exited all objects and that point
depth corresponds to the maximum of the depth interval. This pro-
cedure can be efficiently carried out for all pixels simultaneously
via a depth-peeling algorithm. In the case of one-sided surfaces,
they can be accounted for as coinciding front and back faces.

Having the per-pixel depth intervals of the shadow map, we then
find a simplified surface inside the depth bounds which allows for
a sparse decomposition. Interestingly, the task of finding an inter-
mediate surface inside a given envelope is a common problem in
mesh simplification, and for the 3D case it is known to be NP-
hard [AS94]. We propose two greedy approaches, which perform a
sparse decomposition and tree construction at the same time. The
first one is a top-down approach which tries to globally minimize
the number of distinct depth values, while the second one operates
in a bottom-up manner and inspects only local pixels from the next
finer level. The depth-value hierarchy will then be compressed us-
ing a quadtree structure.

Top-down construction The top-down construction starts at the
coarsest level, which represents the entire image domain, and
greedily selects the depth value which covers the largest number of
depth intervals. It then marks all pixels that can be represented by
this value as covered. These covered pixels will inherit the depth
value from the coarsest level and only the remaining uncovered
pixels need to store a separate depth value. The approach then pro-
ceeds to the next finer level by decomposing the domain into four
quadrants. For each quadrant that contains at least one non-covered
value, the algorithm is launched recursively. If all pixels in a quad-
rant are covered or the finest level is reached, the algorithm stops.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Algorithm 1 Pseudo-code for top-down hierarchy creation
function createHierarchy(intervals) :

sortedIvals← sort(intervals)
createNode(rootNode, sortedIvals)

function createNode(node, sortedIvals) :
bestIval← 0
numIvals← 0
bestNum← 0
for each ival ∈ sortedIvals do

if isMin(ival) then
numIvals++

else
numIvals- -

end if
if numIvals > bestNum then

bestNum← numIvals
bestIval← ival

end if
end for
sortedIvals← extractUncovered(sortedIvals, bestIval)
for each child do

childIvals← extractChildIvals(child, sortedIvals)
createNode(child, childIvals)

end for

Consequently, homogeneous areas result in an early termination of
the process.

To find the depth value covering most intervals, a direct approach
would be to discretize the depth, create a histogram, and find the
bin with the largest number of overlapping intervals. To avoid dis-
cretization, we propose an analytic sweep-based algorithm instead.
We start by sorting all interval-bound depths (min and max) in as-
cending order. Then, we sweep through the sorted list and keep
track of the number of overlapping intervals by incrementing a
counter each time an interval minimum is encountered (we enter
an interval) and by decrementing it when a maximum is encoun-
tered (we exit an interval). The highest detected count during the
sweep leads to the depth representative which covers the maximum
amount of intervals possible (Fig. 3). The pseudo-code for the top-
down decomposition is shown in Alg. 1.

The algorithm requires a single sorting in the beginning, which
can be performed in O(n logn) with n being the number of intervals
(shadow map pixels). Once the initial list is sorted, all subsequent
levels only require an O(n) extraction step to retrieve the sorted list
of uncovered-pixel intervals for the corresponding quadrant. Since
the extraction has to be performed for each level, the overall run-
time remains O(n logn).

Bottom-up construction An alternative is a bottom-up construc-
tion, which only considers the subjacent pixels of the next finer
level during creation. This approach is better suited for parallel ex-
ecution and, for all our test scenes, it performs competitively to the
top-down construction, while being an order of magnitude faster.

The bottom-up construction is based on the idea of a min-max
mipmap creation. Initially, the pixels at the finest level will contain

Algorithm 2 Pseudo-code for bottom-up hierarchy creation
childbounds← [lower,upper]
for level from finestlevel - 1 to coarsestlevel do

for each pixel in level do
children← getChildren(pixel, level+1)
depthRepresentative← findBestRepresentative(children)
bounds(pixel)← []
for each child ∈ children do

if satisfiesBounds(depthRepresentative, child) then
setNonExistant(child)
bounds(pixel)← bounds(pixel) ∩ getBounds(child)

end if
end for

end for
end for

Unsorted intervals

D
ep

th

Occurrence

D
ep

th

Sorted intervals

Figure 3: To find a depth value which intersects the maximum num-
ber of intervals from a given set (left), we propose a sweep-based
mode finding scheme. The interval boundaries are sorted in ascend-
ing order first (left). We can then find the mode which corresponds
to the best depth value by sweeping through the sorted list and keep
track of the number of open intervals.

the lower and upper depth bound. When proceeding one level up,
we analyze the four subjacent depth bounds of each pixel P using
the same sweeping algorithm as for the top-down approach to find
a largest depth interval valid for most of these four pixels. This
interval I is then stored in P and all subjacent pixels, whose depth
interval contain I are flagged as empty pixels. The algorithm then
proceeds upwards to the next level. Once we reach the coarsest
level, we will populate the map with actual depth values in every
non-empty pixel by storing the average of the interval bounds.

Since only four intervals are treated at a time, the costly sorting
step is avoided and the bottom-up construction requires only a con-
stant number of operations per pixel. Hereby, although the com-
plexity stays the same, the algorithm maps better to current GPU
architectures, leading to a practical speedup. The pseudo-code is
shown in Alg. 2 and Fig. 4 shows an example of the creation of
a three level tree. The approach shows similarities to the Mallat-
algorithm for wavelet construction [Mal89], but instead of using

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Figure 4: Three steps of the bottom up creation algorithm. Left: Initially all values are present in the finest level. Middle: The most frequent
value is pulled up the hierarchy. Right: The procedure is repeated for the next level and an empty node is created to preserve the connectivity.

the average as representative we choose the mode from the set of
intervals in order to sparsify the representation.

Tiled construction For the extremely large shadow map resolu-
tions encountered in our approach, it is infeasible to keep the full
uncompressed data in memory to begin with. Fortunately, our ap-
proach is able to perform a tiled construction. First, the shadow
map is divided in tiles of manageable size (in our implementation
typically 4k× 4k - 8k× 8k). For each tile, we compute its uncom-
pressed bounds via depth peeling, compress it using the top-down
or bottom-up algorithm, and store the depth bounds of the root
node. After all tiles have been compressed, the stored depth bounds
from all root nodes form the bounds of a new shadow map, which
is again compressed to create the top level structure of the complete
tree. Since only the uncompressed data of a single tile is required
in memory at once, this construction procedure is both efficient and
maintains a small memory footprint.

3.2. Compressed Quadtrees

The previous algorithms lead to a sparse hierarchy of depth values,
which subsequently needs to be encoded efficiently while ensuring
fast random-access at run-time — which are requirements fulfilled
by a quadtree.

Encoding Our quadtree contains three node types: leaves (nodes
with no children), inner nodes, and empty nodes. Inner nodes and
leaves contain a 32-bit depth value. Empty nodes are only required
to encode the quadtree connectivity, but do not contain a value
themselves. Unlike other multiresolution decompositions, we do
not encode the depth values using parent node differentials. In con-
sequence, only a single value needs to be fetched during tree traver-
sal, which reduces the memory throughput and accelerates lookups.

Inner and empty nodes, contain an 8-bit mask indicating the type
of each child node (stored in two bits) and a pointer to the first child.
We distinguish four cases for the child type: a) non-existent, b) leaf
node, c) inner node, d) empty node. As it is common practice, a sin-
gle pointer is sufficient, as all present child nodes are stored con-
tiguously in memory, and the location of a specific child can be
obtained from examining the mask in the parent node.

We employ the pointer encoding scheme proposed by Lefebvre
et al. [LH07] in order to reduce the amount of memory needed
to store pointers. Their scheme stores subtrees close together and
allows us to encode pointer offsets, whose magnitudes decrease
rapidly per level. Using a per-level scaling, we can efficiently en-
code pointers even for larger resolutions with just 16 bits introduc-
ing only a minimal padding overhead for alignment. We exhaus-

Levels 0 1 2 3 4 5 6 7 8 9 …

Y 1 1 1 0 1 0 0 0 1 1

X 0 1 0 1 0 0 1 0 1 1

Next child = b11 = 3

Diverging paths

Y 0 1 0 0 1 0 0 0 1 1

X 1 1 1 0 0 0 1 0 1 1

8

Sample 0

Sample 1

Figure 5: Finding the next child index can be done by inspecting
the bits from the x and y position of the query point. The lowest
common node of multiple query points can be found by finding the
last level where the bits are equal.

tively search for the optimal per-level scaling factor as proposed by
Lefebvre et al. Finally, we also pad full and empty nodes with a sin-
gle byte, resulting in 4-byte aligned nodes (8 bytes for full nodes,
and 4 bytes for empty nodes and leaves). The padding increases the
memory footprint, but eases fetching the values on current GPU
architectures, hence decreasing lookup times. Alternatively, 24-bit
pointers could be used, however, we decided to keep the bit count
compatible with the compressed octree representation which will
be introduced in Sec. 4. In all our test scenes, no significant dif-
ference was introduced by using 16-bit pointers instead of 24-bit
pointers for the quadtree compression. If memory footprint is over-
all more critical than traversal performance, the padding can be re-
moved to further improve the compression.

Traversal Traversal of our compressed-quadtree encoding follows
the same procedure as standard quadtree traversal, but performs
lazy fetching of the depth values to account for the presence of
empty nodes. The traversal path through the tree is defined by the
position of the query point. By keeping track of the current level,
we can directly compute the index of the next child using a few bit-
operations (see Fig. 5). We start traversal at the root node (which is
always a full node) and initialize a pointer which holds the index of
the last node containing a depth value. After reading the children
mask and pointer, we compute the index of the next child and query
the mask to validate the child’s existence. We compute the offset of
the next child node from the mask and the 16-bit child pointer, to
recursively continue the traversal. The pointer to the last position
of a depth value is always updated, if we traverse a full node. If
a child node does not exist or a leaf node is reached, the depth
value is fetched from the last-stored position and the recursion is
terminated. We do not query the depth value earlier, as these would

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Figure 6: Required traversal steps in the CLOSED CITY scene for a
5x5 PCF filtering using a naive implementation (lower-left triangle
of the image) and our optimization finding the lowest common node
first (upper-right triangle). Bright colors represent numbers close
to the maximum (tree height times number of samples), while dark
ones mean that only few levels are traversed.

be unnecessary texture fetches, since we do not store differentials,
but absolute values.

Although hierarchical traversal has typically a run-time depend-
ing on the tree height, the sparsity of our tree often leads to a ter-
mination after only a few levels.

3.3. Filtering

Efficiently filtering shadow lookups is an important aspect for
shadow mapping. Percentage-closer filtering (PCF) [RSC87] is a
popular technique which performs averaging of several depth-test
results in a fixed-size kernel (usually an r× r box). A naive im-
plementation of PCF using our approach would perform a full tree
traversal for each kernel sample. Since our quadtree encodes a mul-
tiresolution prediction, we can perform analytic filtering when all
samples end up at the same node. While this is not always the case,
most samples share at least a common path from the root node un-
til a certain level. This level can be directly computed from the
minimum and maximum query points of the filter kernel and a few
bit-operations (see Fig. 5). We propose to traverse all kernel sam-
ples together through the first few levels until we find the lowest
common node where paths divergence. After that, each sample pro-
ceeds individually. This easy-to-implement optimization can lead
to drastic improvements in PCF lookup time. A visualization of
the amount of traversal steps for the naive implementation and our
optimization for a 5x5 PCF filtering is shown in Fig. 6. Another
possible optimization is to keep a cache of the last queried sample
and reuse it if the next sample shares the same path through the tree
down to the retrieved value.

Multiresolution anti-aliasing such as hierarchical PCF computes
the shadow map footprint of a pixel and looks up the depth value
for the corresponding resolution level. Since each of our tree levels
encodes a full shadow map of the corresponding resolution, hier-
archical filtering is natively supported. When performing PCF fil-
tering, the appropriate sampling level of the hierarchy can be cho-
sen to maintain a 1 to 1 correspondence between screen pixels and

Figure 7: Left: Computing soft-shadows from an area light requires
to sample multiple close-by points on the light source to apply
slight variations to the incoming light direction. The set of shadow
maps can be stacked in a 3D image cube for efficient compression.
Right: Motion of dynamic light source, which is known in advance,
can be precomputed by discretly sampling the trajectory, e.g., for
simulating high-quality shadows from sun lights.

shadow map texels. This ensures that smooth shadows are present
at any view distance regardless of a pixel’s projected area in the
shadow map. Furthermore, tri-linear filtering can be performed by
choosing two consecutive sample levels and interpolating their val-
ues in order to create smooth transitions during motion.

4. Shadow map stacks

We can extend our concept of compressed multiresolution hier-
archies directly to a set of coherent shadow maps. By stacking
shadow maps in a 3D image cube, we can compute a sparse de-
composition in the same manner as for a single shadow map and
encode it using an octree. This approach is useful for rendering of
soft shadows from area lights (Fig. 7, left) or varying light posi-
tions (Fig. 7, right). For soft shadows, we sample multiple light po-
sitions on an area light using a Hilbert-curve sampler as also used
by Ritschel et al. [RGKM07]. The light positions can be jittered in
order to avoid banding for smaller sampling rates. For moving light
sources, the motion has to be known and the images are simply
stacked in the order of discrete sample points along the trajectory.
Our hierarchical structure is able to exploit coherency along all 3
dimensions by encoding homogeneous cubic regions in coarser lev-
els of the hierarchy.

The construction and traversal techniques of the previous section
can be directly applied for octrees as well. The only major differ-
ence, however, is that we now have to consider potentially eight
children instead of four, which leads to 16-bit child masks. This
conveniently removes the need for padding and makes the octree
nodes perfectly aligned to 4-byte boundaries by default.

In the case of light trajectories, it is often only necessary to store
a small number of different light positions. In this case, creating
an equally-sized cube would restrict the resolution to match the
number of images. Our approach allows for a convenient encoding
of non-cubic image stacks by generating placeholder nodes with a
depth boundary of [0,1]. Having the largest possible interval width,
these nodes will be merged up the hierarchy during compression
and introduce only little overhead.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Method 1K2 2K2 4K2 16K2 64K2 256K2 512K2 1M2

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.092 MB 0.23 MB 0.56 MB 2.83 MB 12.85 MB 54.09 MB 109.8 MB 221.9 MB

Sintorn et al. - - 0.62 MB 3.40 MB 14.89 MB 60.46 MB - -
Ours 0.067 MB 0.17 MB 0.41 MB 2.10 MB 9.26 MB 38.43 MB 79.63 MB 160.5 MB

C
L

O
SE

D
C

IT
Y

Ours (ratio) 1.68% 1.06% 0.64% 0.21% 0.056% 0.015% 0.0078% 0.0039%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.15 MB 0.36 MB 0.78 MB 3.42 MB 14.03 MB 56.61 MB 113.5 MB -

Sintorn et al. - - 0.94 MB 3.94 MB 16.38 MB 63.34 MB - -
Ours 0.11 MB 0.26 MB 0.59 MB 2.70 MB 11.41 MB 46.73 MB 94.88 MB 190.4 MB

C
IT

Y
SC

A
P

E

Ours (ratio) 2.75% 1.625% 0.92% 0.26% 0.069% 0.0178% 0.0090% 0.0045%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.14 MB 0.40 MB 1.10 MB 5.89 MB 25.25 MB 103.84 MB - -

Sintorn et al. - - 1.78 MB 9.26 MB 39.70 MB 166.47 MB - -
Ours 0.11 MB 0.35 MB 0.86 MB 5.01 MB 23.61 MB 101.52 MB 205.5 MB 414.6 MBV

IL
L

A

Ours (ratio) 2.75% 2.18% 1.34% 0.48% 0.14% 0.03% 0.02% 0.009%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.21 MB 0.60 MB 1.44 MB 6.73 MB 28.23 MB 115.34 MB 233.2 MB -

Sintorn et al. - - 2.01 MB 8.66 MB 35.57 MB 153.67 MB - -
Ours 0.15 MB 0.43 MB 1.05 MB 5.26 MB 22.71 MB 94.18 MB 191.5 MB 392.1 MBSH

IP

Ours (ratio) 3.75% 2.68% 1.64% 0.51% 0.13% 0.036% 0.018% 0.0093%

Table 1: Compression results for our 2D MH approach comparing to the scanline compression of [AH05] and the voxelized shadows approach
of [SKOA14]. Our approach outperforms competing compression approaches consistently while retaining full depth precision.

Resolution Total nodes Rendering MH creation Quadtree creation Serialization Total time Kampe et al. time

1K2 14944 0.019 0.001 0.003 0.007 0.089 -
4K2 90775 0.067 0.003 0.004 0.017 0.242 0.098
64K2 2037131 3.253 0.555 0.584 0.260 5.301 4.878

C
L

O
SE

D
C

IT
Y

256K2 8477953 39.53 9.052 3.653 1.001 55.18 65.23

1K2 25859 0.012 0.001 0.003 0.009 0.089 -
4K2 130974 0.044 0.004 0.009 0.021 0.221 0.061
64K2 2508119 1.755 0.551 0.612 0.299 3.888 4.089

C
IT

Y
SC

A
P

E

256K2 10215660 22.45 8.975 4.287 0.984 38.85 51.58

Table 2: A detailed inspection of construction timings and tree characteristics for the multiresolution quadtree compression for the CLOSED

CITY and CITYSCAPE scene. Rendering times dominate construction times, while creation of the sparse decomposition and quadtree encod-
ing constitutes around one third of the total. We also provide a comparison to the method from Kampe et al. [KSA15].

5. Results

In this section, we demonstrate the compression capabilities of our
method for five test scenes and evaluate its construction and run-
time. The CLOSED CITY scene (613K triangles) represents a typi-
cal open-world game setting with both large scale and detailed fea-
tures. The CITYSCAPE scene (11K triangles) is an example of an
architectural design model, while the VILLA scene (89K triangles)
as well as the SHIP scene (810K triangles) are examples of scenes
containing many fine scale details. The DRAGON scene (7.2M tri-
angles) consists of a scanned model with a very high polygon count.

We implemented larger parts of the construction algorithm on
the GPU using NVidia CUDA 7.5. The rendering is done using
OpenGL 4.3 and deferred shading, and our measurements are re-
ported for the evaluation of the shadows. All experiments were at a
resolution of 1920x1080 on Windows 7 using a PC with and Intel
i7-5820K CPU with 16GB of system memory, and an NVidia Titan
X GPU. We re-implemented the algorithm of Arvo et al. [AH05]

for the comparison to scanline compression. For the comparison
to DAG-based compression of voxelized shadows [SKOA14], we
used the implementation provided by the authors which includes
all the improvements from Kampe et al. [KSA15].

Quadtree compression Table 1 presents compression results for
single shadow maps using multiresolution quadtree compression.
We report memory footprints for the quadtree using the 1-byte
padding for inner nodes and a full 32-bit depth precision. In all
cases, our algorithm outperforms the previous approaches and is
able to compress even large resolutions in the order of hundreds
of thousands down to a few hundred megabytes. All results used
the bottom-up construction. Note that, in contrast to the previous
approaches, our method implicitly encodes a full multiresolution
representation of the shadow information.

Table 2 showcases detailed construction times and total node
quantity for several test scenes, as well as the construction time

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Figure 8: Top: An overview of the VILLA scene with an unfiltered
32K2 compressed shadow map. Bottom left: Close-up of filtered
shadows rendered in 2 ms using a 3x3 non-hierarchical PCF kernel.
Bottom right: Another viewpoint with a 5x5 non-hierarchical PCF
filtering kernel rendered in 5 ms.

Method 4K2 16K2 64K2 256K2

Shadow mapping 0.25 0.36 - -
Ours 0.495 0.52 0.54 0.71

Si
ng

le

Arvo et al. 0.39 0.51 1.04 2.6
Sintorn et al. 0.61 0.61 0.68 0.72

Shadow mapping 0.34 0.65 - -
Our PCF Naive 3.35 3.7 3.99 4.11

3×
3

Our PCF Optimized 1.61 1.72 1.89 2.04
Arvo et al. 0.85 1.25 4.18 9.7

Shadow mapping 0.62 1.46 - -
Our PCF Naive 7.7 8.49 8.9 9.32

5×
5

Our PCF Optimized 3.45 3.95 4.4 4.72
Arvo et al. 1.4 2.25 5.6 15.9

9×9×9 Sintorn et al. 0.78 0.84 0.93 0.96

Table 3: Traversal time in ms for a single scene (VILLA) for our
approach and comparing to standard shadow mapping and the ap-
proaches from Arvo et al [AH05] and Kampe et al. [KSA15]. The
latter is highly optimized for a cubic 9×9×9 kernel size and for a
fair comparison, we only report these numbers.

for the voxelized shadows approach from Kampe et al. [KSA15].
While the preprocessing time is not interactive for larger resolu-
tions, we report numbers in the same order of magnitude as the
highly-optimized implementation from Kampe et al. It can be seen
that most of the time is spent in the depth peeling in order to obtain
the initial depth bounds. The compression itself is mostly domi-

Figure 9: Top: An example of hierarchical PCF with a 3×3 kernel
in the CLOSED CITY scene. Anti-aliased shadows are present at
all distances. Bottom left: An inset showing anti-aliased shadows
closer to the camera. Bottom right: Another inset showing anti-
aliased shadows cast by a complex occluder in the distance.

nated by the bottom-up construction that creates the sparse decom-
position, and to a lesser extent by the encoding of the quadtree.
Finding the optimal per-level scale for 16-bit pointer compression
only takes up a small fraction of the overall construction time.

In Table 3 we report timings for single lookup performance and
different PCF kernel sizes. We compare our optimized PCF imple-
mentation against a naive one, standard shadow mapping (for sup-
ported resolutions), and the methods from Arvo et al. [AH05] and
Kampe et al. [KSA15] for the VILLA scene. Since it is naturally
provided, our implementations perform hierarchical PCF. Shared
traversal is significantly faster for PCF filtering than a naive imple-
mentation (up to 2 ms for a 3x3 kernel, and 4.7 ms for 5x5). The
method from Arvo et al. performs well for small PCF kernels at
low resolutions, but does not scale well. The voxelized shadow ap-
proach is highly optimized for 9x9x9 and 17x17x17 cubic kernels,
and achieves almost the same look-up times compared to single
lookups. Nevertheless, their filtering is done in 3D space and at
reduced precision, which potentially results in artifacts.

In Fig. 8 and Fig. 9, we present visual results for unfiltered, non-
hierarchical, and hierarchical PCF filtering using our method. It can
be seen that even high-frequency shadows from small features can
be faithfully rendered. Additionally, the insets in Fig. 9 show that
anti-aliased shadows at any view distance can be achieved by sam-
pling the appropriate level.

As a practical optimization, Sintorn et al. [SKOA14] store the
top 6 levels of the hierarchy in a simple dense grid for large resolu-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Method 5123 1K3 2K3 4K3

Uncompressed 512 MB 4 GB 32 GB 256 GB
2D MHSM 11.5 MB 48.4 MB 205.8 MB 863.6 MB
3D MHSM 6.7 MB 27.8 MB 145 MB 689.2 MB

D
R

A
G

O
N

3D/2D ratio 57.9% 57.3% 70.4% 78.8%

Table 4: Memory footprint of 3D multiresolution octree-based
compression for a set of N images with different resolutions. As
a comparison we report the memory by naively using our 2D
quadtree compression for each image individually.

Method 256 × 2K2 256 × 4K2 256 × 8K2

Uncompressed 4 GB 16 GB 64 GB
Compressed size 45.85 MB 136.08 MB 456.32 MB

C
IT

Y
SC

A
P

E

Construction time 12.3 s 36.2 s 135.9 s

Table 5: Memory footprint and construction times of 3D multires-
olution octree-based compression for a non-cubic data set of 256
images taken a fixed-trajectory moving light source.

tions. This requires a constant 8 MB of memory, which is negligible
at higher resolutions. The numbers we report for their approach in-
clude this optimization. In our case, this would allow us to remove
the upper 11 levels of the quadtree and halve the number of tra-
versed levels on average. If evaluation time is more critical than
compression, this could potentially lead to faster lookups.

Octree compression We evaluate our 3D compression for high-
quality soft shadows and light motion, and compare it against
naively compressing each image separately with our 2D scheme.
Table 4 reports memory sizes for our image stack compression al-
gorithm for soft-shadows. In the table, we show the resulting mem-
ory footprint of compressing a set of shadow maps from an area
light separately using our quadtree structure and compressing them
with our octree approach. It can be seen that our 3D compression
provides an additional gain and is able to reduce the compression
rate down to 57.9% at best compared to 2D compression.

A visual impression of high-quality soft-shadows in the SHIP

scene is given in Fig. 11. Please note that the shadow penumbrae
generated in this way is geometrically correct and appears more
realistic as opposed to PCF filtering. The lookup time for 32 ran-
dom samples per pixel out of 512 depth maps is 14 ms, whereas
evaluating 64 samples takes 30 ms.

Finally, we evaluate our 3D compression scheme for non-cubic
image stacks for fixed-trajectory light sources in Table 5. We show
different viewpoints for the CITYSCAPE scene in Fig. 10. Since the
construction of the octree is based on cubic tiles, which need to be
kept small to fit in GPU memory, the viewport size for rendering
is restricted, leading to a large amount of render calls. Therefore,
rendering makes up most of the octree creation time.

6. Conclusion and Future Work

We presented a novel compression scheme for shadow maps based
on multiresolution hierarchies. We demonstrated that our approach
creates high-quality shadows for real-time rendering and achieves

Figure 11: Realistic soft shadows in the SHIP scene generated with
an octree from 512 depth maps of 1K2 resolution. Overall, the
compressed octree is stored in 57 MB. Top: A closeup using 32
shadow-map samples per pixel rendered in 14 ms. Bottom: An-
other viewpoint using 64 samples rendered in 30 ms.

high compression rates. For example, our method is able to com-
press a 32-bit shadow map with a resolution of 1.000k x 1.000k (un-
compressed 4 terabytes) down to 0.0045% at best. Another benefit
of our approach is that a multiresolution representation is highly
beneficial for fast hierarchical filtering. Using a set of coherent
shadow maps, we are able to create soft shadows or dynamic lights
on a fixed trajectory.

While our approach can handle non-closed geometry, these parts
as well as very thin objects lead to a reduction of compression
performance. This stems from the reduced size of the depth in-
terval, diminishing the possibility for creating homogeneous re-
gions. Nonetheless, this problem is shared by all related compres-
sion methods. Another issue is geometry that is viewed at grazing
angles due to the representation of intermediate surfaces as strictly
axis-aligned planes. In the future, we would like to investigate al-
ternative, non-linear representations to overcome these limitations.

Additionally, we would like to investigate non-regular subdivi-
sion schemes (e.g., based on multiresolution kd-trees) to provide
more adaptivity to the underlying depth signal. Still, it is not clear
how to efficiently construct these non-regular trees and if the over-
head of storing subdivision information introduces a too large over-
head. Finally, we want to investigate sparse decompositions that
avoid storing topological information for empty inner nodes, e.g.,
matrix trees [AT10].

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Scandolo, P. Bauszat, and E. Eisemann / Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows

Figure 10: The CITYSCAPE scene shows shadows from different views taken from a compressed shadow map stack of 256 4K2 images taken
on a trajectory above the city. The octree has a compressed size of 136.08 MB (uncompressed 16 gigabytes) and is queried in under 1 ms.

7. Acknowledgements

We would like to thank Erik Sintorn and his team for kindly provid-
ing their voxelized shadows implementation for our tests, as well as
the CLOSED CITY and VILLA test scenes. The DRAGON model is
freely available at the Stanford 3D scanning repository†. The SHIP

scene was modeled by Greg Zaal and Chris Kuhn, and is available
under the creative commons license at Blend Swap‡.

Ths work was partially funded by the EU FP7-323567 project
Harvest4D and the Intel VCI at Saarland University.

References
[AH05] ARVO J., HIRVIKORPI M.: Compressed shadow maps. Vis.

Comput. 21, 3 (Apr. 2005), 125–138. 2, 7, 8

[AS94] AGARWAL P. K., SURI S.: Surface approximation and geometric
partitions. In Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms (1994), SODA ’94, Society for Industrial and
Applied Mathematics, pp. 24–33. 3

[AT10] ANDRYSCO N., TRICOCHE X.: Matrix trees. Computer Graph-
ics Forum 29, 3 (2010), 963–972. 9

[CCG96] CHADDHA N., CHOU P. A., GRAY R. M.: Constrained and
recursive hierarchical table-lookup vector quantization. In Data Com-
pression Conference (1996), IEEE Computer Society, pp. 220–229. 2

[DJ98] D. M., J. B.: Directx 6 texture map compression. Game Devel-
oper (1998), 42–46. 2

[Eng06] ENGEL W.: Cascaded shadow maps. ShaderX5: Advanced Ren-
dering Techniques (2006). 1

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER
M.: Real-Time Shadows. A.K. Peters, 2011. 2

[Eve01] EVERITT C.: Interactive order-independent transparency, 2001.
3

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREENBERG
D. P.: Adaptive shadow maps. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (2001),
SIGGRAPH ’01, ACM, pp. 387–390. 1

[GG91] GERSHO A., GRAY R. M.: Vector Quantization and Signal
Compression. Kluwer Academic Publishers, 1991. 2

[HIN04] HONG Z., IOURCHA K., NAYAK K.: Fixed-rate block-based
image compression with inferred pixel values, Aug. 10 2004. US Patent
6,775,417. 2

[IM06] INADA T., MCCOOL M. D.: Compressed Lossless Texture Rep-
resentation and Caching. In Graphics Hardware (2006), The Eurograph-
ics Association. 2

† http://www.graphics.stanford.edu/data/3Dscanrep
‡ http://www.blendswap.com

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware (2002), HWWS ’02, Eurographics Association, pp. 7–15. 2

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.: High resolution
sparse voxel dags. ACM Transactions on Graphics 32, 4 (2013). SIG-
GRAPH 2013. 2

[KSA15] KÄMPE V., SINTORN E., ASSARSSON U.: Fast, memory-
efficient construction of voxelized shadows. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (2015),
ACM. 2, 7, 8

[LH07] LEFEBVRE S., HOPPE H.: Compressed random-access trees for
spatially coherent data. In Proceedings of the 18th Eurographics Con-
ference on Rendering Techniques (2007), EGSR’07, Eurographics Asso-
ciation, pp. 339–349. 2, 5

[LK10] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees – Analy-
sis, Extensions, and Implementation. NVIDIA Technical Report NVR-
2010-001, NVIDIA Corporation, Feb. 2010. 2

[Mal89] MALLAT S. G.: A theory for multiresolution signal decomposi-
tion: the wavelet representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 11 (1989), 674–693. 2, 4

[RGKM07] RITSCHEL T., GROSCH T., KAUTZ J., MÜELLER S.: In-
teractive illumination with coherent shadow maps. In Proceedings of
the 18th Eurographics Conference on Rendering Techniques (2007),
EGSR’07, Eurographics Association, pp. 61–72. 2, 6

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Rendering an-
tialiased shadows with depth maps. ACM Siggraph Computer Graphics
21, 4 (1987), 283–291. 6

[Sam84] SAMET H.: The quadtree and related hierarchical data struc-
tures. ACM Comput. Surv. 16, 2 (June 1984), 187–260. 2

[Sam85] SAMET H.: Data structures for quadtree approximation and
compression. Commun. ACM 28, 9 (Sept. 1985), 973–993. 2

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.:
Compact precomputed voxelized shadows. ACM Trans. Graph. 33, 4
(July 2014), 150:1–150:8. 2, 7, 8

[WE03] WEISKOPF D., ERTL T.: Shadow mapping based on dual depth
layers. Eurographics 2003 Short Papers (2003). 2

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph. 12, 3 (Aug. 1978), 270–274. 1

[Woo84] WOODWARK J. R.: Compressed quad trees. The Computer
Journal 27, 3 (Aug. 1984), 225–229. 2

[Woo92] WOO A.: The shadow depth map revisited. In Graphics Gems
III, Kirk D., (Ed.). Academic Press, 1992, pp. 338–342. 2

[WP12] WOO A., POULIN P.: Shadow Algorithms Data Miner. A K
Peter/CRC Press, June 2012. 2

[ZSXL06] ZHANG F., SUN H., XU L., LUN L. K.: Parallel-split shadow
maps for large-scale virtual environments. In Proceedings of the 2006
ACM International Conference on Virtual Reality Continuum and Its Ap-
plications (2006), pp. 311–318. 1

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

