
High-Performance Graphics (2021)
N. Binder and T. Ritschel (Editors)

Directed Acyclic Graph Encoding for Compressed Shadow Maps

Leonardo Scandolo, and Elmar Eisemann †

Delft University of Technology

Abstract
Detailed shadows in large-scale environments are challenging. Our approach enables efficient detailed shadow computations
for static environments at a low memory cost. It builds upon compressed precomputed multiresolution hierarchies but uses a
directed acyclic graph to encode its tree structure. Further, depth values are compressed and stored separately and we use a
bit-plane encoding for the lower tree levels entries in order to further reduce memory requirements and increase locality. We
achieve between 20% to 50% improved compression rates, while retaining high performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Shadow Maps (SM) [Wil78] enable real-time shadow computations
but suffer from staircase artifacts due to insufficient SM resolutions.
While a high SM resolution can mitigate this problem, artifact-free
shadows require orders of magnitude larger resolutions than what
is supported on consumer GPUs.

In static scenes with closed geometry and static light, it is possi-
ble to apply lossless compression schemes to SMs. Such compres-
sion still must allow efficient random access, since time budgets for
shadow calculations are typically only a few milliseconds. A sep-
arate scheme is needed for shadows cast by dynamic objects, but
these objects can still be shadowed by the compressed SMs. The
main related approaches include voxelized shadows encoded as di-
rected acyclic graphs (DAG) [SKOA14] and multiresolution hier-
archies (MH) [SBE16a], which both lead to tremendous memory
savings. We present a novel structure, combining these techniques,
lowering memory requirements even further. We start with an MH
encoding but propose to decouple the MH structure from the depth
values it stores. The MH tree structure will be encoded as a DAG,
which vastly reduces its memory footprint, especially at large reso-
lutions. The depth values are compressed separately in a factorized
representation. The resulting structure is 20% to 50% smaller than
the current state-of-the-art [SBE16b], while maintaining fast ran-
dom access.

† e-mail: {l.scandolo,e.eisemann}@tudelft.nl

2. Related Work

In this section, we will focus on works related to precomputed
shadow generation algorithms. For a more general view on shad-
ows, we refer to [ESAW11].

Arvo et al. [AH05] introduced compressed shadow maps, based
on the concept of dual shadow maps [WE03], capturing the first
and second surface visible from the light. A SM with depth values
within these bounds results in the same shadows. Arvo et al. rep-
resent scanlines as linear segments, remaining within the dual SM
bounds. While achieving good compression rates, the high amount
of line segments that need to be traversed result in low performance.
Similarly, Ritschel et al. [RGKM07] compress groups of similar
equal-resolution shadow maps by representing pixels for the whole
group as line segments.

Scandolo et al. [SBE16a] created a shadow map representation
that respects the bounds of a dual shadow map using a scheme in
two dimensions instead of one. They create a sparse SM hierarchy
based on a quadtree, where depth values at higher levels represent
large amounts of similar values in lower levels. This sparsity at low
hierarchy levels leads to high compression rates. Merged multires-
olution hierarchies [SBE16b] extend this approach by finding re-
gions in the MH that admit a single representation that stays within
the dual SM bounds. In practice, when two or more subtrees are
compatible, one is modified to hold the single representation val-
ues, the others are eliminated and their parents point to the now
shared representation. Hereby, memory requirements sink while the
traversal method stays identical. This method has also been utilized
for compression/rendering of 3D layered volumes [GRRP∗20].

A very efficient tree structure are directed acyclic graphs
(DAGs), which were initially geared towards compressing sparse
binary voxel grids [KSA13]. They have proven useful in

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

Full quadtree node

Empty quadtree node

Figure 1: The core step of MH construction replaces as many val-
ues in a higher resolution level by a single value at the next lower
resolution level. This process is repeated hierarchically, and then a
quadtree is constructed to represent this hierarchy.

many applications and recent years brought various improve-
ments [VMG16,VMG17,KRB∗16,vdLSE20]. DAGs compress bi-
nary Sparse Voxel Octrees (SVO) [LK10, CNLE09] by replacing
redundant subtrees via a pointer to one common location. If one
encodes shadows in a sparse voxel grid spanning the complete
scene, the compression via a DAG can lead to good rates [SKOA14,
KSA15]. Nevertheless, the original SVO is typically 16 to 18 levels
deep, which reflects the effective depth precision and is lower than
the typical 24 or 32 bits of a standard SM.

Recent work went beyond binary information in a DAG by de-
coupling the voxel geometry from the stored values. By keeping ex-
tra information to track DAG traversals, one can link a unique index
to each region in space represented by a node [DKB∗16,DSKA19,
CBE20] These indices then allow access to a compressed list of
values. Our work is inspired by these structures, but encodes depth
values in an MH. We propose several modifications to accommo-
date the different characteristics of the structure and its values.

3. Our Method

We create a dual shadow map [WE03], encoding the first and sec-
ond surface as seen from the light source. If the depth values in an
SM remain within their respective intervals, shadows will remain
correct, thus compression is lossless in the evaluation sense. Mul-
tiresolution hierarchies (MH) [SBE16b] encode sparse depth tex-
tures as a hierarchy, where each level halves the resolution along
each axis. The core of the algorithm is shown in Fig. 1: a group
of four pixels at a certain level and their intervals are analyzed to
replace as many as possible by a single new interval on the next
(quarter-resolution) level of the hierarchy. Only the children that
cannot be represented by this interval are kept, the other intervals
are represented implicitly by the parent. This process is repeated
throughout all levels (bottom to top). The resulting structure is en-
coded as a sparse quadtree with intervals in some nodes and special
empty nodes with no values to preserve connectivity.

Merged Multiresolution Hierarchies (MMH) additionally exploit

00: missing
01: inner empty
10: inner full
11: treelet

value count children pointers

24 bits 0 - 96 bits

flags

8 bits

Figure 2: Inner nodes can be between 8 and 40 bytes long, depend-
ing on the amount of children nodes present.

the redundancy in the structure. A pair of subtrees in the hierar-
chy with the same topology and intersecting depth intervals can be
replaced by a single subtree with values inside the corresponding
intersected intervals. Similar to MMHs, we exploit redundancy in
this tree of depth intervals; we compress the tree structure and the
depth intervals separately, which proves very beneficial.

In the following, we will explain the basis of our tree encod-
ing (Sec. 3.1), followed by an introduction of a special represen-
tation for the final levels of the resulting quadtree (Sec. 3.2), and
an explanation of a separate encoding scheme for the depth values
(Sec. 3.3). Finally, we will provide details on the structure traver-
sal (Sec. 3.5), and how to reconstruct depth values from our com-
pressed representation (Sec. 3.6).

3.1. Structure compression

Our method builds upon the encoding of attributes in a DAG repre-
sentation [DKB∗16]. We aim to separate the sparse quadtree struc-
ture from the stored values, which enables us to store the tree as a
DAG with a single representation of every subtree topology. In con-
trast to MMHs, we are only concerned with the structure and not
the values (which will be encoded separately), enabling much more
merging options. Similar to attribute-encoding DAGs [DKB∗16],
we store the depth values according to a depth-first traversal of
the tree and each inner node of the DAG stores the total amount
of values in its corresponding subtree (see Fig. 2). During a tree
traversal, we can then keep track of the index of the current visited
node, allowing us to retrieve the corresponding value from the en-
coded depth-value list. As a final note, in contrast to typical DAG
structures used for voxel encoding, we allow the presence of empty
nodes, which do not contain values.

3.2. Treelets

Previous DAG implementations encode the last levels of the hi-
erarchy as a flat bitmap to reduce pointer memory. While useful
for sparse binary voxel data, MHs hierarchically encode one 32-
bit value per location, so reverting to a dense representation would
require storing many repeated values. Instead, we maintain the hi-
erarchical structure via a binary tree representation.

In practice, we store subtrees of height ≤ 4 as a 4-level treelet
(see Fig. 3). We assume a full tree, where a bit is set to one if
a node contains a value and zero otherwise, stored in depth-first

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

01 00 00 10 01 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 10 11 01 01 00 00 00 00 00 00 11

00 00 00 00 00 00 00 00 00 00 0

value count bitmap

8 bits 85 bits

pad

3 bits

Figure 3: A 4-level subtree is encoded as a 12 byte treelet in binary
form with depth-first ordering. Empty inner nodes are drawn with
a dotted line. Some nodes are highlighted in color to match their
position in the binary representation.

order for efficient traversal. A full quadtree of height n then fits

into
n

∑
d=1

4(d−1) bits.

3.3. Depth value compression

Initially, we create the depth-first ordered depth-interval list. As el-
ements close in the list mostly correspond to spatially-close loca-
tions, one can expect overlapping depth intervals. To this extent,
we partition the list into chunks of 32 intervals and compress each
chunk individually. We proceed in two steps; finding a common
representative, and then a minimal bit representation.

For each chunk of 32 intervals, we initially want to find a depth
value that is contained by as many of those intervals as possible.
We can then store this representative value, along with a bitmask
marking which intervals it satisfies. We consider all depth intervals
as closed intervals, therefore one or more of the interval limits (min
or max) must satisfy as many intervals as possible. A brute-force
approach can test all such values against all intervals and keep the
one that satisfies the maximum amount. A faster approach is to cre-
ate a sorted list of all limits in increasing order. Starting from the
lowest minimum, which we know satisfies one interval, we traverse
the list while keeping a counter of satisfied intervals. While travers-
ing the list, we increase the counter when we encounter a minimum
limit, and decrease it when we encounter a maximum limit. The
value encountered when the counter was maximized is selected as
a representative.

For the remaining chunk intervals not satisfied by the chosen
representative, we could proceed iteratively, choosing further rep-

representative
 bitmap

32 bits

representative
 value

32 bits

factor list
pointer

24 bits

sum 
constant

32 bits

multiplier 
constant

32 bits

factor
bits

8 bits

Fixed-size chunk info list

Variable-size factors list

20 bytes 20 bytes 20 bytes

Figure 4: Values are encoded in two lists, a fixed-sized element
list containing information of each 32-element value chunk, and a
variable-sized element list containing multipliers needed to recon-
struct the original values.

resentatives until all are covered. Nevertheless, this would quickly
yield diminishing returns and also reduce evaluation and compres-
sion efficiency. Instead, we use a factorized representation. We en-
code a depth value for each remaining interval as cl + cf ∗ iv, where
cl and c f are constant factors per chunk, and iv is different for each
of the remaining intervals. The goal is to store cl and c f as 32-bit
floating point values, and store the iv factors as integers with as
few bits as possible. To achieve this, we first inspect the bounds
of the intervals and find the lowest bound vl and highest bound
vh in the set. We assign vl to cl , and for increasing choices of bit
count b for the interval factors, we define an appropriate c f and
test whether all intervals can be satisfied. For a choice of b, we
set c f = (vh− vl)/(2

b− 1), the smallest factor such that the depth
values can span the range of values from vl to vh with only b bits
for each iv. We then attempt to represent each of the intervals as
vb = cl +c f ∗ ivb, where ivb has b bits. There may not exist such ivb
factor for all intervals, especially if very small intervals are present,
so we repeat this process for increasing values of b. Once we find
a suitable value for b, we store this choice in the chunk, as well as
cl , c f . We store the list of b-bits iv factors separately, and store the
address to the start of the list in the chunk (see Fig. 4). To increase
evaluation efficiency, we attempt this encoding only with bit counts
that are multiples of 8, and when b= 32, we resort to simply storing
the depth values directly.

3.4. Encoding

The DAG structure contains two different types of members: inner
nodes and treelets. Inner nodes consist of 3 parts: children flags,
subtree value count, and child pointers (see Fig. 2). Child flags store
2 bits per child, totaling 8 bits and they encode the type of each
child: non-existant, full inner node, empty inner node, or treelet.
The subtree value count is stored in 24 bits to ensure a 32-bit align-
ment for nodes. This allows us to represent up to roughly 16 million
values, which is enough for our tests, but can easily be extended by
using additional bits. Finally, the children pointers are stored as 32-
bit integers, which ensures a 32-bit alignment.

Treelets encode the value count as an 8-bit value, since our
choice of height results in a maximum of 85 values. This is then

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

Algorithm 1 Treelet traversal algorithm pseudo-code
function GETVALUEINDEXTREELET(coord,searchState)

bitmap← readBitmap(searchState.nodePtr)
for i ∈ [0,4) do

level← 3-i . Check levels from bottom to top
nodeBitIndex← preorderIndex(coord, level)
exists← checkBit(bitmap, nodeBitIndex)
if exists then

count← countSetBitsUpto(bitmap, nodeBitIndex)
return searchState.valueCount + count + 1

end if
end for
return searchState.valueLast

end function

followed by an 85-bit bitmap encoding the existing nodes, stored in
depth-first order. This ordering respects the overall depth-value list
indexing, and therefore allows us to compute the index by counting
the amount of set-bits in the bitmap up to the corresponding index.

The depth value list is divided into two parts: a fixed-size chunk
info list, and a variable-size list of multipliers (see Fig. 4). The
chunk info list contains the representation bitmap for the chunk, as
well as the representative value, cl and c f (defined in Sec. 3.3) as
32-bit floating point values. Lastly, the info list contains a pointer
to the start of the multipliers, stored contiguously as a different list.

3.5. Structure traversal

Traversal of the structure is similar to a typical quadtree traversal,
except that two value indices need to be maintained: the last seen
value index vlast , and the current values count vcount . Both indices
are initialized at 0, which corresponds to the value stored at the root
node. Starting from the root node, we perform the same operations
for all inner nodes encountered. We compute the child index from
the sample coordinate, and inspect the corresponding flags stored
in the node. If the child does not exist, we simply return the last
seen value index. In any other case, we update the vcount by adding
the value counts from existing children at lower indices. If the child
is full, we copy vcount to vlast , which corresponds to the index of the
current child. For empty or full inner nodes, we simply repeat the
same steps until the child does not exist, or a treelet child is found.

Treelet traversal essentially inverts the traversal direction. Since
we have immediate access to the complete structure in the form of
a bitmap, we can check for the existence of a node at the last level
of the structure, and if that is not the case, progressively check the
parent node. Initially vcount points to the index of the first node
stored in the treelet. Once a node is found, its value index will cor-
respond to vcount plus the count of existing nodes before the found
node in depth-first order. To efficiently compute this count, we store
the treelet bitmap in depth-first order, which allows us retrieve the
value simply by counting the set bits in the bitmap up to the node
location. This ordering can be computed as:

n+
lmax

∑
l=0

(
l

∑
i=0

4i ∗ lindex

)

Algorithm 2 Value retrieval algorithm pseudo-code
function GETVALUE(index)

ChunkIndex← index / floatsPerChunk
InChunkIndex← index % floatsPerChunk
bitmap← readBitmap(ChunkIndex)
exists← isBitOn(bitmap, InChunkIndex)
if !exists then

return readBaseValue(ChunkIndex)
end if
factorIndex← countSetBitsUpto(bitmap, InChunkIndex)
factorBits← readFactorBits(ChunkIndex)
factorsPointer← readFactorsPointer(ChunkIndex)
iv← readFactor(factorsPointer, factorBits, factorIndex)
if factorBits == 32 then

return interpretAsFloat(iv)
else

cl , c f ← readMultiplyAddFactors(ChunkIndx)
return cl + c f ∗ iv

end if
end function

where n is the level of the found node (starting from zero), lmax
is the treelet maximum level, and lindex is the child index at level
l in the path towards the found node. For our 4-level treelets, this
resolves to n+ 21 ∗ l0 + 5 ∗ l1 + l2. If no node is found, we simply
return the vlast . Alg. 1 shows pseudo-code for treelet traversal.

The evaluation code can be easily extended to handle PCF shad-
owing, similarly to the method employed for MMHs [SBE16b]. At
the start of the pixel evaluation, we analyse the quadtree coordi-
nates of the kernel samples, traverse the hierarchy down to the low-
est common ancestor, and store its location. We then simply obtain
the stored value for each sample iteratively, starting our traversal at
the lowest ancestor, thereby reducing the total amount of traversal
steps. As an added optimization, we cache the last node traversed to
test whether the next sample evaluation can be started at that same
location, should the cached node be an ancestor of the next sample.

3.6. Value retrieval

Once we obtain the value index from the DAG structure traversal,
the procedure to retrieve the depth value is straightforward. If the
bitmap value for the index in the corresponding chunk info value is
set, we simply return the representative value. Otherwise, we read
the per-chunk multiplier bit size, and retrieve the multiplier value
using the pointer stored with the chunk info. We then compute the
value with a multiply-add operation using the factors stored with
the chunk info. In the special case of a 32-bits multiplier bit size,
the multiplier is the actual floating-point value, so we simply rein-
terpret the index value as a 32-bit floating-point variable. Pseudo-
code for the value retrieval algorithm is listed as Alg. 2.

3.7. Skip list

To accelerate tree traversal, we can create a compact node list
densely representing a specific level near the root. This allows us
to start traversal at that level, skipping levels above it, and in some

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

CitadelCitadel

CityCity

HairballHairball

DinosDinos

TreesTrees

Figure 5: Scenes used for our tests.

cases to return a value without any tree traversal steps. In practice,
for larger resolution we create this skip list at level 6. Hereby, we
maintain efficient traversal of the tree while keeping the total mem-
ory needed low, as this list typically represents a few KB, which is
less than one percent of the total structure size.

4. Results

All results were obtained on an Intel i7-5820K CPU running Win-
dows 10, 32GB of memory and an NVIDIA Titan V GPU with
12GB of video memory. Fig. 5 shows the test scenes, of which the
Citadel and City scenes are examples of large scale urban environ-
ments, whereas the Trees and Dinos scenes are examples of smaller
but geometrically complex scenes. The Hairball scene is a standard
highly complex mesh, used as a stress test.

4.1. Compression

We compare the compression rate of our proposed data struc-
ture against a MMH [SBE16a] and DAG-based voxelized shad-
ows [KSA15]. Table 1 shows that our method outperforms the com-
petitors in all cases. In the best case, it uses as little as half the
memory (Hairball scene). The citadel scene’s 512K2 SM only re-
quires around 31MB. Table 2 shows compression times for our
solution and competing schemes for the citadel scene at different
resolutions. Dual shadow map rendering times account for roughly

0 25 50 75 100 125 150 175 200
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fra
m

e 
tim

e 
(m

s)

Sequence evaluation time
MMH, single
MMH, 3x3
MMH, 5x5
DAGMH, single
DAGMH, 3x3
DAGMH, 5x5

Figure 6: Per-frame timing of shadow evaluation for our solution
(DAG-MH) and MMHs at full HD in a flyby of the citadel scene at
64K2 resolution. Initial, mid, and end frame shown below.

80% of the total creation times for our solution. The remaining time
is evenly split between the initial MH creation, and the DAG and
depth value encoding.

4.2. Evaluation efficiency

We also compare the evaluation efficiency of our solution against a
standard MMH [SBE16b] using single value and hierarchical PCF-
based approaches. We use a prerecorded path in the citadel scene
with full HD screen resolution and a 64K2 shadow map resolution.
Fig. 6 shows the timings. Our solution can compute shadows with
a single sample in around 0.5 ms, 3x3 PCF in 1ms and 5x5 pcf in
roughly 2.5ms. Single evaluation is roughly as fast as MMH eval-
uation, whereas 3x3 PCF and 5x5 PCF are roughly half as fast.
This is the result of having to retrieve a value count for each non-
traversed node, which results in more memory accesses per traver-
sal step. Similar to other MH-based solutions, filtering is hierarchi-
cal, meaning that the kernel footprint can always roughly match the
pixel footprint, resulting in antialiased shadows with small kernel
sizes [SBE16a]. Nevertheless, accelerating filtered lookups remains
an important avenue of future work. DAG-based voxelized shadow
solutions [KSA15] can also be evaluated in under 1ms, even for
large kernel sizes (9x9), although the filtering is not hierarchical,
which can result in flickering for large pixel footprints.

4.3. Parameter analysis

Treelet size: Increasing the treelet depth saves memory that would
otherwise be used to store node pointers in a standard tree represen-
tation. Nevertheless, this representation cannot capture similarities

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

Scene Method 4k2 8k2 16k2 32k2 64k2 128k2 256k2 512k2

DAG 0.737 1.79 3.88 8.25 17.00 34.4 69.6 139.7
Citadel MMH 0.351 0.765 1.58 3.24 6.52 13.26 26.93 54.49

DAG-MH 0.252 0.571 1.21 2.43 4.68 8.84 16.59 31.16
DAG 0.929 2.01 3.90 8.10 16.73 33.72 67.89 135.9

City MMH 0.411 0.845 1.71 3.44 6.99 13.90 27.90 55.54
DAG-MH 0.329 0.663 1.29 2.47 4.70 8.83 16.73 31.45
DAG 2.06 5.03 10.71 22.41 45.62 93.46 190.6 384.6

Trees MMH 0.767 1.898 4.394 9.73 20.85 43.36 88.34 177.6
DAG-MH 0.480 1.23 2.96 6.54 13.66 27.53 54.19 104.9
DAG 1.82 3.67 7.29 15.21 31.93 67.24 139.1 281.4

Dinos MMH 0.875 1.79 3.69 7.65 15.90 32.41 65.41 131.2
DAG-MH 0.542 1.07 2.09 4.04 7.71 14.57 27.40 51.50
DAG 21.21 40.69 71.52 133.60 262.50 532.23 1086.56 -

Hairball MMH 5.56 12.37 27.28 58.53 122.46 251.10 - -
DAG-MH 3.73 8.66 18.01 35.33 67.32 127.09 239.9 -
Uncompressed 64 256 1024 4096 16384 65536 262144 1048576

Table 1: Memory requirements comparison in MB between our solution (DAG-MH), MMHs, and DAG encodings.

Method 4k2 16k2 64k2 256k2

DAG 0.047 0.351 4.110 59.85
MH 0.251 0.774 5.488 59.30
MMH 0.257 1.465 10.67 84.42
DAG-MH 0.247 0.875 6.225 62.33

Table 2: Compression time comparison in seconds for our solution
(DAG-MH) and competing methods.

Treelet levels 2 3 4 5
DAG structure size 0.756 0.696 0.622 0.788
Inner nodes 52746 47086 26425 12452

16k2 Nodes size 0.756 0.668 0.375 0.172
Treelets 23 5683 21595 14666
Treelets size <0.001 0.027 0.247 0.615
DAG structure size 2.475 2.399 2.261 3.493
Inner nodes 177882 170726 124947 66475

64k2 Nodes size 2.475 1.585 0.831 0.704
Treelets 23 7179 47157 61164
Treelets size <0.001 0.814 1.430 2.789

Table 3: DAG structure size and composition characteristics when
using different treelet heights for the Citadel scene.

inside different treelets, which is why DAG representations work
better for very large trees. Furthermore, the treelet bitmap needs
to be read during traversal, which can result in large amounts of
memory reads when the treelet depth is high. Table 3 shows the re-
sults of compressing the Citadel scene using different treelet sizes.
4-level treelets result in the best compression rates, due to the best
compromise between treelet and inner-node memory requirements.

Value chunk size: Table 4 showcases the size and composition
of the depth representation for different chunk sizes. With larger
chunk sizes, fewer values can be covered by the representative
value overall, and more bits are needed to represent each remaining

Values per chunk 16 32 64 128
DAG values size 0.688 0.588 0.578 0.592
Chunks map size 0.397 0.220 0.132 0.088

16k2 Chunks factors size 0.291 0.368 0.446 0.504
Avg. factor qty 57.6% 61.5% 64.6% 67.7%
Avg. factor bits 10.95 13.09 15.33 16.71
DAG values size 2.897 2.423 2.362 2.388
Chunks map size 1.728 0.960 0.576 0.384

64k2 Chunks factors size 0.169 1.463 1.786 2.004
Avg. factor qty 52.6% 56.3% 59.5% 62.3%
Avg. factor bits 10.87 12.89 15.13 16.48

Table 4: Value compression rates and characteristics for different
chunk sizes tested for the Citadel scene.

value as a factor. Past 32, we see diminishing returns, and past 128
values, we see an increase in memory consumption as more bits
are used for storing factors. Further, retrieving a value can require
accessing the complete value bitmap, making smaller chunk sizes
more attractive. A size of 32 achieves the best compromise between
memory savings and access time.

5. Conclusion and future work

We have introduced a novel encoding for compressed SMs, relying
on three key components: DAG encoding of the quadtree structure,
use and encoding of treelets for lower tree levels, and a specialized
depth-value compression scheme. The resulting structure reduces
memory requirements up to 50% compared to state of the art solu-
tions while retaining real-time evaluation rates. Interesting avenues
of future work include using more compact DAG representations,
such as symmetry-aware DAGs [VMG17], and considering lossy
representations [vdLSE20].

Acknowledgments This work is partly supported by VIDI
NextView, funded by NWO Vernieuwingsimpuls.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



L. Scandolo and E. Eisemann / Directed Acyclic Graph Encoding for Compressed Shadow Maps

References
[AH05] ARVO J., HIRVIKORPI M.: Compressed shadow maps. Vis.

Comput. 21, 3 (Apr. 2005), 125–138. 1

[CBE20] CAREIL V., BILLETER M., EISEMANN E.: Interactively mod-
ifying compressed sparse voxel representations. In Computer Graphics
Forum (2020), vol. 39, Wiley Online Library, pp. 111–119. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel render-
ing. In Proceedings of the 2009 symposium on Interactive 3D graphics
and games (2009), pp. 15–22. 2

[DKB∗16] DADO B., KOL T. R., BAUSZAT P., THIERY J.-M., EISE-
MANN E.: Geometry and attribute compression for voxel scenes. Com-
puter Graphics Forum (Proc. Eurographics) 35, 2 (may 2016). 2

[DSKA19] DOLONIUS D., SINTORN E., KÄMPE V., ASSARSSON U.:
Compressing color data for voxelized surface geometry. IEEE TVCG
25, 2 (2019), 1270–1282. 2

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER
M.: Real-Time Shadows. A.K. Peters, 2011. 1

[GRRP∗20] GRACIANO A., RUEDA-RUIZ A. J., POSPISIL A., BIT-
TNER J., BENES B.: Quadstack: An efficient representation anddirect
rendering of layered datasets. IEEE TVCG (2020). 1

[KRB∗16] KÄMPE V., RASMUSON S., BILLETER M., SINTORN E.,
ASSARSSON U.: Exploiting coherence in time-varying voxel data. In
Proceedings of ACM i3D (2016), pp. 15–21. 2

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.: High resolution
sparse voxel dags. ACM Transactions on Graphics 32, 4 (2013). SIG-
GRAPH 2013. 1

[KSA15] KÄMPE V., SINTORN E., ASSARSSON U.: Fast, memory-
efficient construction of voxelized shadows. I3D ’15, ACM. 2, 5

[LK10] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees – Analy-
sis, Extensions, and Implementation. NVIDIA Technical Report NVR-
2010-001, NVIDIA Corporation, Feb. 2010. 2

[RGKM07] RITSCHEL T., GROSCH T., KAUTZ J., MÜELLER S.: In-
teractive illumination with coherent shadow maps. In Proceedings of
the 18th Eurographics Conference on Rendering Techniques (2007),
EGSR’07, Eurographics Association, pp. 61–72. 1

[SBE16a] SCANDOLO L., BAUSZAT P., EISEMANN E.: Compressed
multiresolution hierarchies for high-quality precomputed shadows. Com-
puter Graphics Forum (Proc. EG) 35, 2 (May 2016). 1, 5

[SBE16b] SCANDOLO L., BAUSZAT P., EISEMANN E.: Merged mul-
tiresolution hierarchies for shadow map compression. Computer Graph-
ics Forum 35, 7 (2016), 383–390. 1, 2, 4, 5

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.:
Compact precomputed voxelized shadows. ACM Trans. Graph. 33, 4
(July 2014), 150:1–150:8. 1, 2

[vdLSE20] VAN DER LAAN R., SCANDOLO L., EISEMANN E.: Lossy
geometry compression for high resolution voxel scenes. Proceedings of
ACM i3D 3, 1 (2020), 1–13. 2, 6

[VMG16] VILLANUEVA A. J., MARTON F., GOBBETTI E.: Ssvdags:
symmetry-aware sparse voxel dags. In Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (2016),
pp. 7–14. 2

[VMG17] VILLANUEVA A. J., MARTON F., GOBBETTI E.: Symmetry-
aware sparse voxel dags (ssvdags) for compression-domain tracing of
high-resolution geometric scenes. Journal of Computer Graphics Tech-
niques Vol 6, 2 (2017). 2, 6

[WE03] WEISKOPF D., ERTL T.: Shadow mapping based on dual depth
layers. Eurographics 2003 Short Papers (2003). 1, 2

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph. 12, 3 (Aug. 1978), 270–274. 1

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.


