
Quad-Based Fourier Transform for Efficient Diffraction Synthesis

Leonardo Scandolo†1, Sungkil Lee‡2 and Elmar Eisemann§1

1Delft University of Technology, Netherlands 2Sungkyunkwan University, South Korea

+ +

=

(a) Parametric aperture definition to K quad primitives (b) Fourier transforms (FTs) of subdivided quads (c) Far-field diffraction (d) Near-field diffraction

+...

quad 0, 1 quad 2, 3 quad K-2, K-1

+ + +...

Figure 1: Given an aperture image, we subdivide it into a list of parametric quad primitives forming a quadtree (a). The Fourier transform of
each quad is efficiently evaluated with a closed-form solution (b), and combined to render the final far-field diffraction (c). We extend this
approach to also produce near-field diffraction (d). (c) and (d) are rendered in 0.85 ms and 2.1 ms at 1024×1024 resolution, respectively.

Abstract
Far-field diffraction can be evaluated using the Discrete Fourier Transform (DFT) in image space but it is costly due to its
dense sampling. We propose a technique based on a closed-form solution of the continuous Fourier transform for simple vector
primitives (quads) and propose a hierarchical and progressive evaluation to achieve real-time performance. Our method is able
to simulate diffraction effects in optical systems and can handle varying visibility due to dynamic light sources. Furthermore,
it seamlessly extends to near-field diffraction. We show the benefit of our solution in various applications, including realistic
real-time glare and bloom rendering.

1. Introduction

Diffraction phenomena can be observed when taking a photo of a
strong light source, which typically results in bursting streaks (or
glares) [SSZG95,KMN∗04,RIF∗09,HESL11]. While often used for
artistic purposes, these effects also increase the perceived brightness
of light sources [SSZG95, YIMS08] and are important elements of
realistic rendering beyond typical ray optics.

By definition, diffraction refers to the interference and super-
position of spherical waves propagating around obstructions (i.e.,
apertures) in the path of light. Fresnel’s diffraction integral [PW15],
based on Huygens’ principle of wavelet superposition, mathemati-
cally models diffraction. In practice, additional geometric approx-
imations (Fresnel and Fraunhofer approximations) can be applied
for distant observation planes (at near and far field).

Near/far-field diffraction has typically been computed by formu-
lating the problem as a Fourier Transform (FT) and resorting to

† l.scandolo@tudelft.nl
‡ sungkil@skku.edu (corresponding author)
§ e.eisemann@tudelft.nl

optimized FT implementations [KMN∗04], usually relying on an
image-space Discrete FT (DFT) under the assumption of a periodic
function. Given a 2D sampling resolution of M×N, the per-pixel
time complexity of the DFT is O(MN). Separable integration and
Fast DFT (FFT) are more efficient alternatives but still costly and
oriented mostly to offline processing.

While many applications use static aperture patterns, a faster
simulation of diffraction can enable applications to capture physical
details caused by dynamic aperture changes from area lights, stray
lights, and optical elements. However, real-time applications have
hardly used dynamic diffraction due to the low FT performance.

Our key observation to accelerate diffraction computations is that
the optical aperture image is relatively simple in its color and shape;
real light sources are strong (mostly white) and iris apertures are
polygon-like. Consequently, we opt for a geometrical representation
of the aperture and formulate a closed-form solution for its shape.
Similar ideas have been applied in electromagnetics and optics for
polygon support and specific patterns [YF74, LM83, MS91] but
no generalization for rendering exists. While similar in spirit, our
solution is generalizable, flexible, and parallelizable. Specifically,
we present an efficient diffraction rendering technique. Instead of

This is the author’s version of the work. It is posted here for your personal use. Not for re-
distribution. The definitive Version of Record was published in Computer Graphics Forum,
https: //doi.org/10.1111/cgf.13484.

2 L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis

DFT, we combine closed-form FT of vector primitives in the contin-
uous domain. At its basis, our approach uses quads with constant
intensity as such vector primitives and builds upon their closed-form
solution to the diffraction integral. We show that quads are an ef-
ficient basis even for input images with complex shapes, since we
use a hierarchical tessellation. Contrary to previous solutions, the
complexity of our transformation relies on the number of quads (tes-
sellating an aperture) instead of the image resolution, which proves
typically advantageous. We also introduce a progressive refinement,
which exploits spatiotemporal coherence for incremental updates.
Our method is suitable for graphics-processing-unit (GPU) execu-
tion, enabling interactive and dynamic diffraction rendering. Besides
achieving a high-quality far-field approximation, our approach can
be extended to a high-quality near-field approximation as well.

Precisely, we make the following major contributions:
• an efficient rendering scheme of a quad-based FT for far-field

diffraction;
• a hierarchical technique for diffraction of arbitrary apertures;
• a progressive refinement to exploit spatiotemporal coherence;
• several performance optimizations for real-time rates;
• a seamless extension to near-field diffraction.

2. Related Work

2.1. Diffraction Modeling and Rendering

Diffraction and wave optics in computer graphics are used mostly
for glare rendering and reflectance modeling.

Glare rendering relates to the properties of an optical system with
an aperture for strong light sources. Early studies to reproduce the
patterns used analytic approximations where diffraction gratings
are mapped to streaks [NKON90]. It is simple but has limited mod-
eling power for arbitrary apertures. Kakimoto et al. introduced a
practical rendering framework and improved accuracy via the FT-
based diffraction integral [KMN∗04], which was later used for lens
flares [HESL11]. Other work attempted to model glares in the human
visual system [Rok93, SSZG95, RIF∗09]. Spencer et al. intensively
discuss physiological glare components and their causes [SSZG95].
Additional modeling (e.g., light scattering) and temporal fluctuation
were introduced for higher perceptual accuracy [RIF∗09].

The reflectance modeling to spectral interference has focused on
bidirectional reflectance functions of surface microstructures. An
effective diffraction analysis was proposed (avoiding the evaluation
of Kirchhoff integral) for the microstructure of surfaces (e.g., a com-
pact disc) [Sta99]. Further efficiency can be obtained with spheri-
cal harmonics and the Chebyshev approximation [LA06, DG16].
A high-quality solution to generate multiple scattering effects
was introduced using destructive interference [CHB∗12]. Recently,
many studies have extended microfacet models to simulate iri-
descence from scratch [WVJH17], metal surfaces [DWMG15],
thin-film coating [BB17], often integrating data-driven acquisi-
tion/rendering [TG17] or a two-scale geometry model [HP17].

In the previous work, simple texturing/billboard or iterative filter-
ing are common in interactive applications [Rok93,Oat04], but high-
quality modeling relies on FT [Sta99, KMN∗04, RIF∗09]. The FT
results are stored in lookup tables as Point-Spread Functions (PSFs)

for online usage due to its cost. In contrast, our work accelerates the
FT itself, which enables real-time evaluation and applications.

2.2. Acceleration Techniques for Fourier Transform

A FT of digital images typically relies on numerical integration.
FFT [CT65] is typically applied when the sampling interval is uni-
form over input/output and the signal is periodic. For general cases,
FFT is currently the most efficient solution and recent work focuses
on optimizations. FFTW is an optimal CPU implementation [FJ98]
and parallel versions of FFT have received attention due to the in-
creased throughput on modern hardware [MA03,GLD∗08,FPV∗09].

A substantial amount of literature exists for near-optimal or ap-
proximate DFTs, attaining sublinear complexity. We refer the reader
to [HIKP12] for a survey. A notable attempt is Sparse FT [HIKP12],
which excludes negligible coefficients from the FT evaluation, lead-
ing to an approximate but high-quality result.

For simple input functions, the continuous FT can have a closed-
form solution. The function can be either piecewise constant [Sor95]
or piecewise discontinuous [FL04, LNL08]. Several parametric
functions admit closed-form solutions, including sunburst pat-
terns [YF74], polygonal shapes [LM83, MS91], and triangular
meshes [HCL91, LLNZ11]. The majority of such closed-form so-
lutions are applied for electromagnetic analyses or the detection of
diffraction [LHP17]. Rendering of dispersion and near-field ringing
has hardly been explored with this direction.

Our work introduces and extends concepts for accelerated FT
computation to rendering for real-time diffraction effects. We ex-
ploit that large constant areas in an image are quite common for
diffraction rendering; e.g., an area light source or an aperture. Quad
primitives approximate such regions well and lead to GPU-friendly
light-weight computations, resulting in good performance. We also
propose a hierarchical solution and progressive refinement that lead
to additional acceleration and enable dynamic visibility integration.
These concepts are difficult to couple with general supports, such
as triangles [HCL91, LLNZ11], where the performance benefits of
closed-form solutions can be lost.

3. Background

We first revisit the standard FT and its formulation for diffraction
before introducing our contributions.

3.1. Standard Fourier Transform

Given a function f in the spatial domain, the FT operator F defines
F(f) as a continuous integration over the spatial domain:

F(f)(u,v) = F(u,v) =
∫∫ ∞
−∞

f (x,y)h(ux+ vy)dxdy, (1)

where i =
√
−1, h(x) := e−i2πx, and (u,v) is a frequency-domain

position. If f is regularly sampled and periodic, its DFT is:

F(u,v)≈ 1√
MN ∑

N−1
y=0 ∑

M−1
x=0 f (x,y)h(

ux
M

+
vy
N
), (2)

where M,N are the sampling resolutions over x,y respectively. An
effective DFT evaluation relies on FFT, reducing the per-pixel com-
plexity to O(logM+ logN), but is still costly in a real-time context.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis 3

3.2. Diffraction with Fourier Transform

Given the source aperture plane position p := (x,y) and the desti-
nation position (x′,y′) at the observation plane at distance z, the
Huygens-Fresnel equation describes diffraction as:

D(x′,y′,λ) =− i
λ

∫∫
f (x,y)

eikR

R
dxdy, (3)

where λ is a wavelength of light, k = 2π/λ, and R = ((x′− x)2 +

(y′− y)2 + z2)1/2 [PW15]. The power spectrum of D(x′,y′,λ) cor-
responds to the intensity that we wish to visualize in the final image.
Computational efficiency can be increased by using Fresnel’s ap-
proximation for Near-Field Diffraction (NFD) [PW15]:

D(x′,y′,λ)∝ 1
zλ

∫∫
f (x,y)h(− x2+y2

2zλ
)h(

xx′+yy′

zλ
)dxdy. (4)

Note that we drop a phase term as it is irrelevant to the power
spectrum. When the destination plane is assumed to be far (i.e,
(x2 + y2)� zλ), Far-Field Diffraction (FFD) becomes:

D(x′,y′,λ)∝ 1
zλ

∫∫
f (x,y)h(

xx′+ yy′

zλ
)dxdy, (5)

When we let (u,v) = (x′/zλ,y′/zλ), FFD becomes a scaled FT:

D(x′,y′,λ)∝ F(u,v)/(zλ), (6)

where u and v can be considered spatial frequencies [PW15].

D(x′,y′,λ)∝ 1
zλ

∫∫
f (x,y)e−i2π(xx′+yy′

zλ
)dxdy. (7)

4. Our approach

Our approach uses axis-aligned quad primitives with constant inten-
sity. Quads allow us to efficiently approximate arbitrary shapes via
tessellation into a set of disjoint quads. Given that our input is a digi-
tal image, which is by definition composed of small quads/pixels, the
constancy assumption does not restrict our solution. While different
shapes can be used as primitives, obtaining a tessellation of the input
image into more complex shapes becomes a bottleneck. Conversely,
quads lend themselves well to a hierarchical representation, which
reduces their number, and results in an efficient implementation.

We first introduce our novel approach on a primitive-based FT
and specialize it for quad primitives (Sec. 4.1). Then, we present
our approach to render FFD effects (Sec. 4.2). In this context, we
will also describe the efficient tessellation of the input into a hierar-
chical representation. We then explain accelerations to our solution
(Sec. 4.3) and show how to integrate occlusion and area lights
(Sec. 4.4). Finally, we extend our approach to NFD (Sec. 4.5).

4.1. Primitive-based Fourier Transform

Here, we introduce our primitive-based FT, which we use for effi-
cient diffraction synthesis. Fundamental to our method is the refor-
mulation of the image-space FT. The idea is to decompose the input
signal into a sum of primitives (e.g., polygons). The primitive-based

FT then uses the superposition principle, which states that the FT of
each primitive can be computed independently:

F(a f (x)+b f (y)) = aF(f (x))+bF(f (y)). (8)

The superposition principle has also been shown for diffraction in
optics (e.g., Babinet’s principle) [BW13, PW15].

Initially, we assume all primitives are disjoint, i.e., the original
signal is a union of all primitives without intersection. Then, the FT
can be computed as a sum:

F(q) = ∑k∈KWk(q), (9)

where q := (u,v),K is the set of primitives, and Wk the transform of
the primitive k. To compute Wk, we assume k is given by a function
fk(p) and a domain Ωk, typically bounded in R2. We then obtain:

Wk(q) = F(fk)(q) =
∫

Ωk

fk(p)h(p ·q)dp. (10)

Quad-based Closed-Form Solution Axis-aligned quads with con-
stant intensity are easy-to-integrate, and result in an efficient and
concise closed-form solution. Additionally, we show that using the
shift property of the FT, we can achieve further acceleration.

A quad k with constant intensity Ik is defined as the inside
of a bounded rectangular domain Ωk = {(x,y) ∈ R2| |x− cx| ≤
sx/2, |y−cy| ≤ sy/2}, which is centered at ck = (cx,cy) with a size
of sk = (sx,sy). Since the function fk of k is separable along x and y
axes, fk is defined as a tensor product of boxcar functions:

fk(x,y) = Ik (Πcx,sx ⊗Πcy,sy)(x,y) = Ik Πcx,sx(x)Πcy,sy(y), (11)

where the boxcar function is defined as Πc,s(x) = H(x− c+ s/2)−
H(x−c− s/2), and H(x) is the Heaviside step function. The closed-
form FT of the boxcar function Πc,s(x) is given as:

Γc,s(u) = F(Πc,s(x))(u) = s sinc(πus)h(c), (12)

where sinc(x) = sin(x)/x. Then, we can obtain the closed-form
solution to Wk(q) as a tensor product of Γ:

Wk(q) = Ik
(
Γcx,sx ⊗Γcy,sy

)
(q). (13)

While this evaluation is simple for a single quad, having several
quads leads to many redundant computations. We can reduce the
number of computations using the shift property, which states:

Wm(q) = h(d ·q)Wk(q). (14)

This holds for two quads k and m of the same spatial support size,
with a displacement d, such that fm(p) = fk(p+d). Hence, we can
reuse the FT of a single quad for the FTs of all equally-sized quads.

Rendering the object-space FT The rendering is straightforward.
For a given list of quads, we evaluate the FT for each pixel using
Eqs. (9) and (13), efficiently on the GPU. We employ Eq. (14) to
compute the quad FT only once.

4.2. Far-Field Diffraction Rendering

Here, we introduce the application of the previous analysis to
achieve efficient FFD effects. We describe the approach for a point
light source and how to decompose the aperture into a small set of
quads to achieve a fast diffraction computation.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

4 L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis

(a) (b)
= = = =

Figure 2: Examples of the non-uniform quadtree subdivision: sub-
tractive superposition (a) and non-square rectangles (b).

Principle Given a point light source and a camera with an aperture
and image plane, we can produce a realistic diffraction pattern in real
time. As pointed out in Sec. 3, assuming that the aperture is given in
the form of a binary image, its FT will yield the desired diffraction
pattern. In principle, we could treat each pixel of the aperture image
as a quad, collect them in a list, and apply the solution from the
previous section. Nevertheless, as the compute time is governed by
the quads, it is beneficial to minimize their number.

Hiearchical Decomposition of Aperture and Rendering To re-
duce the number of quads, we use a quadtree, which hierarchically
tessellates the aperture (Figure 1) for a compact representation.

We perform a bottom-up quadtree construction, which is fast to
compute. The process is initiated from the binary aperture image and
proceeds from mipmap to mipmap level. When four child texels have
the same value, we consider them merged, write their common value
on the next mipmap level and proceed. Otherwise, we append quads
to the list of quads to transform. Contrary to a typical quadtree, we
introduce a special non-uniform subdivision procedure (Figure 2).
Specifically, if only one quad has a value of one, we attach this single
quad to the list and write a zero in the next level. If two adjacent
quads have a value of one, a merged quad is appended (Figure 2b).
Otherwise, both are appended. If three quads have a value of one,
we write a one on the next level and attach a negative quad to the
list (Figure 2a), which has the support of the quad with value zero
but will be subtracted after transformation.

During the evaluation of the quad list, we employ the shift prop-
erty. For each quad shape and size, we compute its FT only once,
and apply Eq. (14) for congruent quads. Hereby, we accelerate the
FT evaluation without reducing quality.

4.3. Accelerations

Culling and Symmetry An important observation is that a signifi-
cant portion of the FT output contains zeros (in terms of the power
spectrum) and skipping these pixels would accelerate computations.
Testing for zeros in the power spectrum at full resolution would be
too expensive. Instead, we use a lower-resolution image (in practice
1/82) and additionally test if the analytical derivatives of the power-
spectrum of the FT are zero. While not strictly conservative, the
continuity of the derivatives leads to a very good estimate and we
found no differences with respect to the actual zero test at full HD
resolution. The previous pixel-based FTs lack analytical derivatives
and cannot profit from such an acceleration.

Additionally, we exploit mirror symmetry in the FT. We evaluate
only the half-plane and mirror it, obtaining the other half for free.
When the input image has additional symmetries, which are common
for apertures, we can exploit these as well.

Progressive Refinement Another strong benefit of the object-space
transformation (Eq. (9)) is the use of progressive refinement. We

Figure 3: Example frames of a moving circle occluding a heptag-
onal aperture. Our progressive method can update the FT for the
entire aperture by adding/subtracting only the FTs of newly disoc-
cluded/occluded (green/red) quads to/from the previous calculation.

capture dynamic spatio-temporal changes, which significantly dis-
tinguishes our solution from the pixel-based FTs. When the input
apertures show coherence, instead of recreating the FT from scratch,
we update the FT by exploiting the superposition principle. To this
extent, we derive a quad list that represents the difference between
the current and previous aperture. We perform a bottom-up proce-
dure on this difference (Figure 3), where we extract all positive and
negative quads. This procedure is similar to the original extraction,
but we deal with the positive and negative parts independently in dif-
ferent texture channels, which allows us to apply the same merging
strategies as before without making the quadtree creation procedure
more complex. Progressive refinement proves very beneficial for an-
imation, since typically only a reduced number of quads are needed
to update the FT. Additionally, it is highly important when including
visibility changes to the aperture shape (Sec. 4.4).

Accelerated Spectral Integration So far, we have described a
method for computing the monochromatic diffraction pattern for a
single wavelength. For visible diffractions, there is usually a need to
cover the whole visible spectra. For an accelerated spectral integra-
tion, we extend that introduced in [HESL11].

We start with a reference wavelength λr (e.g. 587.6 nm), for which
we compute its FT Fλr

. Each different λ gives a relative wavelength
scale ρ(λ) = λr/λ. Given the observation distance z and defining
ur = x′/zλr and vr = y′/zλr, the diffraction for λ can be expressed
in terms of the diffraction of λr as:

D(x′,y′,λ)∝ 1
zλ

Fλ(q) =
1

zλr
ρ(λ)Fλr

(ρ(λ)q). (15)

The required spectral samples correspond to scaled texture locations
(ρ(λ)q in Eq. (15)), lying on the same line passing through q and
the origin. For a fixed z, 1/(zλr) is a constant. Using Eq. (15), we
establish a relation between the color pattern Sk created by a quad k:

Sk(q)∝ Lk(q) =
∫

λ∈Λ

X (λ)‖Fλ(q)‖
2dλ

=
∫

λ∈Λ

X (λ)ρ(λ)2‖Fλr
(ρ(λ)q)‖2dλ, (16)

where ‖F‖2 is the power spectrum of the FT, Λ is the spectral
domain, X (λ) is a normalized spectral response function for a par-
ticular chromaticity channel (e.g., X , Y , or Z in XY Z color space),
and the scale relates to the exposure time. In general, X (λ) is empir-
ically defined in terms of piecewise measurements; a recent analytic
approximation exists [WSS13] but does not lead to a closed-form

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis 5

origin origin

qq

Figure 4: Uniform spectral scaling (left) and 4-channel batch spec-
tral scaling (right), with examples for the diffraction of an hexagonal
aperture. Our batch scaling saves the amount of lookups from the
base pattern by roughly a factor of four.

(a) Normal FT (b) with Perlin aperture noise (c) with anisotropic Perlin noise

Figure 5: Examples of diffraction patterns without noise (a) and
with the addition of Perlin noise (b) and anisotropic noise (c).

integration. Hence, we numerically integrate it via:

Lk(q)≈∑λ∈Λ′ X (λ)ρ(λ)2︸ ︷︷ ︸
dispersive weights

‖Fλr
(ρ(λ)q)‖2dλ, (17)

where Λ
′ is a discrete subset of Λ in a finite visible spectral range,

and ∑λ∈Λ′ X (λ)dλ = 1.

While the scaling-based integration (Eq. (17)) avoids brute-force
spectral sampling, many samples (e.g., > 60) are needed to avoid
spectral aliasing. Therefore, we propose batch-scaling using an
intermediate four-channel texture. In this texture, we store four
nearby samples of ‖Fλr

‖2 along the scaling line ρ(λ)q in a RGBA
quadruplet. In a second pass, we sparsely sample this texture along
the same line recovering four samples at a time, which are then
scaled by the dispersive weights (Eq. (17)). In this way, we only need
a quarter of the original texture lookups. As reference wavelength λr,
we use the geometric mean of the extrema of the visible wavelength
range (e.g., 529 nm for [400,700] nm). Using batch-sampling leads
to non-uniform spacing towards the extrema but the difference to
uniform sampling is marginal, as seen in Figure 4.

4.4. Occlusion and Area Lights

Up to now, we have ignored any kinds of occlusions additional to
the aperture shape. Given the efficiency of our approach, we can
integrate dynamic visibility changes in the scene.

One simple type of occlusion results from imperfections such as
floating dust particles on lenses. These occlusions could be approx-
imately handled by integrating perturbation of the input aperture
pattern. We can use arbitrary noise patterns but Perlin noise offers
spatiotemporal coherence for animation (Figure 5).

For more structural occlusions due to a blocker, our approach can
show major advantages. In this case, we can render the aperture as

(a) (b) (c)

Figure 6: Near-field diffraction pattern of a partially occluded
aperture using a quadtree resolution of 10242 (a) and 1282 (b), and
a 5× difference visualization (c). Both results are very similar but
the lower quadtree resolution results in a ∼ 7× speedup.

(a) (c)(b)

Figure 7: Spectral integration (over 60 wavelengths) of the NFD
pattern (a) cannot be approximated as done for the FFD (c). How-
ever, a heuristically chosen scaling factor (here, 1+ 0.05(1−ρ))
still can produce a plausible approximation (b).

seen from the light source and project the scene geometry on top of
it to derive the unblocked part of the aperture. The resulting aperture
image can then be transformed with our approach. In this scenario,
the progressive refinement proves particularly useful.

So far, we have assumed a point light source and obtained only
the Point-Spread Function (PSF) of the resulting aperture image.
In reality, light sources cover an area. Consequently, we convolve
diffraction patterns over this area by using them as PSFs [RIF∗09].

However, when integrating visibility, each point in the area light
source may exhibit different viewing conditions, impacting the
diffraction pattern. Here, for each point sample, we need to ren-
der the scene towards the aperture. For large area lights, this step
remains costly. Although we did not investigate this direction, image-
warping approximations and solutions such as [HREB11] can be
used. As a cheaper alternative, we could also consider a small neigh-
borhood in the scene image around each light sample and intersect
the light-source pixels with the aperture image. In this way, we
approximate a projection of the aperture from the image plane into
the scene and onto the light. Our approximate projection is mean-
ingful under the assumption that all scene geometry is closer to the
aperture than the light source. When the geometry is fairly far from
the aperture, the quality of the resulting approximation is reduced.

4.5. Near-Field Diffraction

Having derived FFD patterns (Eq. (5)), we also seamlessly extend
our work to NFD, where the far-field assumption does not hold.
NFD is often related to ringing at the edges of bokeh patterns or
ghosting apertures in lens-flare rendering [Kin75, HESL11].

It is known that the superposition principle also holds for near-
field diffraction [PW15], as evidenced by Eq. (4). Consequently, we
can compute it as a sum in terms of the NFD of a set of primitives:

G(u,v) = ∑k∈KVk(u,v), (18)

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

6 L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis

NFD (z=100/k) NFD (z=500/k) NFD (z=2500/k) NFD (z=10000/k)Input aperture

(d
)

w
h

ir
l

(c
)

h
e

p
ta

g
o

n
(b

)
c

ir
c

le
(a

)
b

o
x

FFD

1.000/64.1 dB 1.000/64.9 dB1.000/65.0 dB1.000/57.0 dB 1.000/64.8 dB

0.998/59.6 dB 0.997/54.1 dB0.998/59.2 dB1.000/53.4 dB 0.997/50.0 dB

1.000/61.5 dB 0.999/59.8 dB0.999/61.5 dB1.000/52.0 dB 0.998/58.7 dB

0.998/57.4 dB 0.998/57.9 dB0.998/58.1 dB1.000/50.9 dB 0.998/57.7 dB

Figure 8: FFD and NFD outputs (scaled for illustration) for the
input aperture images (the first column) used for the experiment.
The numbers at the bottom indicate SSIM/PSNR values measured
against the references (generated by discrete NFD/FFD solutions).

where Vk is the contribution of quad k in the set K. Using Eq. (4)
and the constancy assumption, we obtain:

Vk(u,v) = (Ik/zλ)(gcx,sx(u))
(
gcy,sy(v)

)
, (19)

where

gc,s(t) =
∫ c+s/2

c−s/2
h(tx− 1

2zλ
x2)dx. (20)

Unlike the FFD, the integral we need to solve involves square
terms of x, requiring evaluating Fresnel integrals (see Appendix A).
Unfortunately, Fresnel integrals have no analytical solution. There-
fore, we use a numerical approximation [Mie98], accelerated by a
1D look-up table of the precomputed Fresnel integrals.

Efficient Rendering Our approach for NFD is more expensive than
our FFD solution given that we need to compute the complex-valued
Fresnel integrals four times for each quad. Yet, we can observe
that the product in Eq. (19) is again separable. To avoid redundant
computations, we propose an effective two-pass optimization, such
that unique combinations of (k,u) and (k,v) are evaluated only once.
In the first pass, for each quad, we precompute gcx,sx(u) and gcy,sy(v)
for all u and v, respectively, and store these results in a texture.
Then, in the next pass, for every pixel, Vk(u,v) can be obtained by
combining these partial results according to Eq. (19), which reduces
the number of evaluations drastically.

For the FFD, we speed up computations by performing a culling
pass at a lower resolution, and enabling progressive refinement for
dynamic scenes. Our experience shows that the NFD result is not
sensitive to high-frequency content for low z values and a coarse
quadtree can be used without significant quality loss (Figure 6).

With respect to the spectral integration, the previously-used sim-
ple scaling for λr cannot be applied (Figure 7c). For correct results,
we need to repeat Eq. (19) for dispersive samples (Figure 7a). How-
ever, we empirically found that scaling with smaller amounts (e.g.,
1+ 0.05(1−ρ)) leads to a plausible approximation but the result
will no longer be physically accurate (Figure 7b).

0.99/48.4 dB 0.99/50.1 dB 0.99/37.5 dB

0.751 ms 0.408 ms 1.411 ms 0.708 ms 2.390 ms 1.241 ms

circle heptagon whirl

0.99/55.0 dB 0.99/55.9 dB 0.99/42.8 dB

finest

(981 quads)

aggressive

(440 quads)

finest

(1613 quads)

aggressive

(730 quads)

finest

(2673 quads)
aggressive

(1358 quads)

Figure 9: Comparison of quality in terms of quadtree resolution for
monochromatic and dispersive FFDs. The one-step further down-
sampling from the finest quadtree resolution results in a negligible
visual difference (SSIM/PSNR at the bottom), while increasing speed
by a factor of two (timings given at the top).

Table 1: Number of quads produced at the quadtree tessellation.

aperture 2562 5122 10242 20482 40962

box 40 40 40 617 617
circle 109 227 440 981 1976
heptagon 176 389 730 1613 2996
whirl 303 647 1358 2673 5278

5. Results

In this section, we assess performance and quality of our solutions
for FFD and NFD and provide several examples of our results.

5.1. Far-Field Diffraction

The experiments used four input aperture shapes; the monochro-
matic images produced for FFD (and NFD) are shown in Figure 8,
along with quality comparison with respect to the brute-force DFT-
based reference solutions. Their resolution scales from 2562 to
40962. Unlike standard DFT techniques, our technique scales with
the number of quads, where the degree of tessellation depends on
the image content (Table 1); rectangle and circle would already have
optimal analytical solutions, but we showcase them as general cases.
We initiate the finest mipmap level of the quadtree construction
to the half size of the input image to avoid redundancy from anti-
aliased boundaries (rasterized from vector images); note that this
does not reduce the output resolution, unlike a downsampling for
the pixel-based FT techniques. We also use a coarser quarter-size
mipmap for a more aggressive quadtree approximation. Their visual
differences are marginal; Figure 9 shows the comparison of quality
and performance in terms of the quadtree tessellation resolution.

We implemented our solution in OpenGL 4.5 on an Intel i7-5820K
with 3.3 GHz and an NVIDIA GeForce GTX 1080 Ti graphics card.
We first compare our FFD techniques with different implementations
of the standard FT: the well-known FFTW [FJ98] (CPU-FFT), and
our GPU implementation of FFT (GPU-FFT); we note that our
GPU-FFT is equivalent to those used in [KMN∗04, HESL11]. Our
techniques use four versions in terms of aggressive tessellation
and progressive evaluation; the symmetry and culling optimizations
are used in all cases. The progressive evaluation uses animated
sequences, as shown in Figure 3; we overlaid a circular shadow on

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis 7

output resolution

fra
m

e
tim

e
(m

s)

2562 5122 10242 20482 409620

5

10

15

20

25

 2
.6

 2
.6 5

.0
 5

.0

 2
0.

6
 2

0.
6 ≈

 8
7.

0
 8

7.
0

≈

 3
52

.0
 3

52
.0

 0
.2

 0
.2

 0
.4

 0
.4 1
.2

 1
.2

 4
.6

 4
.6

 2
0.

1
 2

0.
1

 0
.1

 (4
0)

 0
.1

 0
.1

 (4
0)

 0
.1

 0
.2

 (4
0)

 0
.2

 1
.2

 (6
17

)
 1

.2

 3
.4

 (6
17

)
 3

.4

 0
.1

 (4
)

 0
.1

 0
.2

 (3
8)

 0
.2

 0
.4

 (5
9)

 0
.4

 1
.7

 (1
93

)
 1

.7

 9
.6

 (4
65

)
 9

.6

 0
.1

 (4
0)

 0
.1

 0
.1

 (4
0)

 0
.1

 0
.2

 (4
0)

 0
.2

 0
.3

 (4
0)

 0
.3

 3
.1

 (6
17

)
 3

.1

 0
.1

 (1
)

 0
.1

 0
.1

 (9
)

 0
.1

 0
.3

 (1
5)

 0
.3

 1
.0

 (4
9)

 1
.0

 3
.8

 (1
19

)
 3

.8

Box

2562 5122 10242 20482 409620

5

10

15

20

25

 2
.6

 2
.6 5

.0
 5

.0

 2
0.

6
 2

0.
6 ≈

 8
7.

0
 8

7.
0

≈

 3
52

.0
 3

52
.0

 0
.2

 0
.2

 0
.4

 0
.4 1
.2

 1
.2

 4
.6

 4
.6

 2
0.

1
 2

0.
1

 0
.1

 (1
09

)
 0

.1

 0
.2

 (2
27

)
 0

.2

 0
.4

 (4
40

)
 0

.4

 1
.7

 (9
81

)
 1

.7

 8
.7

 (1
97

6)
 8

.7

 0
.1

 (6
)

 0
.1

 0
.2

 (2
3)

 0
.2

 0
.3

 (3
1)

 0
.3

 1
.3

 (1
21

)
 1

.3

 4
.4

 (2
52

)
 4

.4

 0
.1

 (5
4)

 0
.1

 0
.1

 (1
09

)
 0

.1

 0
.3

 (2
27

)
 0

.3

 0
.9

 (4
40

)
 0

.9

 4
.5

 (9
81

)
 4

.5

 0
.1

 (1
)

 0
.1

 0
.1

 (6
)

 0
.1

 0
.3

 (8
)

 0
.3

 0
.8

 (3
1)

 0
.8

 2
.4

 (6
6)

 2
.4

Circle

CPU-FFT GPU-FFT ours (full) ours (progressive) ours (coarse) ours (progressive + coarse)

2562 5122 10242 20482 409620

5

10

15

20

25

 2
.6

 2
.6 5

.0
 5

.0

 2
0.

6
 2

0.
6 ≈

 8
7.

0
 8

7.
0

≈

 3
52

.0
 3

52
.0

 0
.2

 0
.2

 0
.4

 0
.4 1
.2

 1
.2

 4
.6

 4
.6

 2
0.

1
 2

0.
1

 0
.1

 (1
76

)
 0

.1

 0
.3

 (3
89

)
 0

.3

 0
.7

 (7
30

)
 0

.7

 3
.6

 (1
61

3)
 3

.6

 2
0.

2
(2

99
6)

 2
0.

2

 0
.1

 (1
1)

 0
.1

 0
.2

 (4
3)

 0
.2

 0
.4

 (6
6)

 0
.4

 1
.9

 (2
21

)
 1

.9

 1
2.

8
(5

76
)

 1
2.

8

 0
.1

 (9
6)

 0
.1

 0
.2

 (1
76

)
 0

.2

 0
.4

 (3
89

)
 0

.4

 1
.7

 (7
30

)
 1

.7

 1
0.

1
(1

61
3)

 1
0.

1

 0
.1

 (2
)

 0
.1

 0
.1

 (1
1)

 0
.1

 0
.3

 (1
7)

 0
.3

 1
.0

 (5
7)

 1
.0

 4
.6

 (1
49

)
 4

.6

Heptagon

2562 5122 10242 20482 409620
5

10
15
20
25
30
35
40

 2
.6

 2
.6 5

.0
 5

.0

 2
0.

6
 2

0.
6

≈

 8
7.

0
 8

7.
0

≈

 3
52

.0
 3

52
.0

 0
.2

 0
.2

 0
.4

 0
.4 1
.2

 1
.2 4

.6
 4

.6

 2
0.

1
 2

0.
1

 0
.2

 (3
03

)
 0

.2

 0
.3

 (6
47

)
 0

.3

 1
.2

 (1
35

8)
 1

.2

 5
.5

 (2
67

3)
 5

.5

 3
3.

7
(5

27
8)

 3
3.

7

 0
.1

 (1
0)

 0
.1

 0
.2

 (3
9)

 0
.2

 0
.4

 (6
0)

 0
.4

 1
.8

 (1
90

)
 1

.8

 9

.8
 (4

79
)

 9
.8

 0
.1

 (1
35

)
 0

.1

 0
.2

 (3
03

)
 0

.2

 0
.7

 (6
47

)
 0

.7

 2
.8

 (1
35

8)
 2

.8

 1
7.

4
(2

80
2)

 1
7.

4

 0
.1

 (2
)

 0
.1

 0
.1

 (1
0)

 0
.1

 0
.3

 (1
5)

 0
.3

 1
.0

 (4
9)

 1
.0

 3
.9

 (1
25

)
 3

.9

Whirl

Figure 10: Timing comparison of our object-based FT methods to the pixel-based FT techniques. Ours include the four versions and the frame
times are shown on each bar. For ours, the average numbers of evaluated quads are shown with blue color in parentheses.

each aperture, which moves at 5 pixels per frame. Then, we report
the individual effects of our optimization techniques.

Figure 10 shows the performance comparison of our techniques
against CPU-FFT and GPU-FFT for monochromatic FFD. Our solu-
tions are faster than CPU-FFT and GPU-FFT, because our methods
evaluate far fewer quads than pixels present in the image. The excep-
tion being the Whirl aperture for high resolutions at the finest tessel-
lation level. Using a coarser input quadtree, our solution outperforms
the competing methods while producing visually indistinguishable
results (Figure 9). Similarly to FFTs, our solutions also scale with
the output resolution, but depend more on the input shape. Our pro-
gressive refinement significantly reduces the effective number of
quads to evaluate without any quality loss; the Box aperture is an
exception due to its simple shape. The number of quads are reduced
roughly down to 10–20% (see the figure for the average number of
the effective quads), and the speedup factors about 2. The aggressive
approximation with the coarser quadtree representation gains an
additional speedup with marginal quality loss. When combining the
progressive evaluation and aggressive approximation, our solution
achieves a great speedup in comparison to GPU-FFT (roughly 5×
faster). Hence, in practice, we suggest using a coarser resolution for
plausible fast rendering. With our object-based approach, it is also
easier to decouple the input and output resolutions than it is when
using pixel-based FTs.

Table 2 shows the performance gain using culling and symmetry.
Culling improves performance by up to 4× and symmetry up to 2×.
Combining both, we achieve up to roughly a 8× speedup.

Table 3 shows the performance gain of the batch spectral scaling
against the full spectral processing. The full processing with scaling
requires 60 spectral samples while our batch scaling requires 4+15
spectral samples and indeed performs about 4 times faster.

Figure 11 shows the performance breakdown of the entire ren-

Table 2: Impact of optimizations on the timing (measured in ms) of
the FFD for the Heptagon aperture.

output resolution 2562 5122 10242 20482 40962

no optimizations (ms) 0.13 0.40 2.25 19.46 139.35
culling (ms) 0.21 0.32 1.06 5.65 31.63
symmetry (ms) 0.14 0.25 1.20 9.76 74.70
culling+symmetry (ms) 0.14 0.26 0.71 3.57 20.22

Table 3: Cost comparison (measured in ms) between the full spectral
scaling and our four-sample batch spectral scaling.

output resolution 2562 5122 10242 20482 40962

full (ms) 0.040 0.127 0.530 1.960 8.180
batch (ms) 0.019 0.038 0.114 0.430 1.710

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 time (ms)
2562
5122

10242
20482
40962

re
so

lu
tio

n

aperture subdivision
culling
FT
spectral integration

Figure 11: Per-stage performance breakdown of our FFD rendering
for the Heptagon aperture.

dering pipeline of FFD, which includes the aperture subdivision,
culling, monochromatic FT, and spectral integration. We note the
noise patterns are optional, for realistic imperfections. Their addition
to the main pattern takes less than 0.5 ms at a 40962 resolution.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

8 L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis

Table 4: Performance (measured in ms) comparison of CPU-
FrFT [TLZ10], GPU-NFD, and our NFD.

output CPU-FrFT GPU-NFD Our NFD

resolution Box Circle Heptagon Whirl

2562 15.98 4.87 0.12 0.11 0.14 0.16
5122 33.01 20.94 0.14 0.23 0.36 0.49

10242 128.72 94.73 0.28 0.84 1.71 2.93
20482 533.85 — 7.88 5.43 15.78 23.42
40962 2133.19 — 30.88 41.30 137.16 255.72

z=120/k z=80/k z=60/k z=40/kz=100/k

Figure 12: As z decreases, the discrete NFD without enough zero
padding leads to interference patterns. Our NFD solution does not
suffer from these artifacts.

5.2. Near-Field Diffraction

For the same data and the same machine used in Sec. 5.1, we com-
pare our NFD technique against our GPU-based implementation of
the reference discrete NFD (GPU-NFD) and a recent CPU-based
discrete fractional FT [TLZ10] (CPU-FrFT; written in Matlab);
in many cases, the NFD evaluation relies on an optimized FrFT
implementation [OZK01]. Unlike our closed-form solution of the
continuous integrals, the discrete techniques may exhibit severe
aliasing for near-source distances (see Figure 12), which requires
significant zero padding to avoid it. For GPU-NFD, we had to use
8× larger resolutions than the input to completely remove aliasing
in our experiments. Thus, in our experiments, GPU-NFD cannot be
produced at input resolutions higher than 10242 (requiring 81922

for the evaluation) due to the hardware limitation. This indicates
important benefit of our solution against the discrete techniques,
where ours accelerates at a lower resolution and uses less memory.

Our NFD solution uses the two-pass optimization (separable
computation of the tensor product), which is roughly 5× faster than
those without the optimization. We used culling, but no symmetry.
The culling used function-only sampling at a lower resolution, since
it is impossible to find the analytic gradient of the NFD power
spectrum. Given that the NFD depends less on high frequencies
when compared to the FFD, this culling produces no artifacts.

Table 4 shows the comparison of the monochromatic NFD gen-
erated with our solution compared to CPU-FrFT and GPU-NFD.
Similarly to the FFD techniques, CPU-FrFT and GPU-NFD scale
only with the image resolutions, while ours depends on the aperture
shapes as well as the image resolutions. For all resolutions, ours are
significantly faster than CPU-FrFT and GPU-NFD; speedup factors
are 34–182× for the most complex Whirl aperture. GPU-NFD is
also slow due to its significant zero padding, which results in 30–
42× slower performance than our NFD (for the Whirl aperture). Our
approach does not suffer from such problems and can be used at

(a) dynamic glare/flare effects rendered with our FFD solution

(b) static glare/flare effects that only modulate the intensity

Figure 13: Comparison of the glare/flare rendering [HESL11] with
the static and our dynamic solutions. Our FFD solution (a) for
the area-light integration well reflects the varying visibility of the
dynamic light source, unlike the static glare effects (b).

Figure 14: An example glare rendering with an eyelash aperture.

any resolution, which also provides more fine-grained control over
performance. As expected, CPU-FrFT is the slowest variant.

As shown in Figure 6, the results of the coarse quadtree are less
sensitive than those of FFDs. Thus, in practice, a more aggressive
downsampling can be used.

Our spectral approximation using linear scaling for NFD is much
faster than a precise evaluation with speedup factors in the range
of 93.1/244.7 for a resolution of 2562/5122, Given the marginal
quality loss, it is a practical alternative to the full evaluation. The
progressive approach has a similar effect as for FFD, which is why
we left this evaluation out.

6. Applications

6.1. Glare Rendering

Glare rendering is a major application for our FFD and NFD tech-
niques, which can be used to achieve more realistic results when
compared to previous techniques that rely on static diffraction pat-
terns [HESL11]. To render dynamic glare, the diffraction pattern
(i.e., PSF) is applied only to the relevant parts of the scene. For
an area light source, we extract the scene image around the light
source, integrate the PSFs of individual light samples with varying
occlusions, and blend the result with the scene image.

Figure 13 shows examples rendered for an area-light source with
and without dynamic diffraction. The aggressive approximations
still result in plausible outcomes, which suits real-time applications

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis 9

Figure 15: The dynamic ringing of the aperture cropped by the lens
housing, which can be used for realistic lens-flare rendering.

well. A variation of glare rendering simulates the effect of eyelashes
(Figure 14), which simplifies the previous models of the human vi-
sual system [KMN∗04, RIF∗09]. More extensive modeling involves
additional components (e.g., iris, cornea, pupil, vitreous humor, and
retina [SSZG95, RIF∗09]).

The performance of our area-light integration is roughly 2× faster
than that of FFT. In our experiments (81 light point samples at 10242

resolution), the timings of ours and FFT for monochromatic outputs
are 31.9 ms and 63.4 ms, respectively. In addition, the aperture
creation (9.42 ms) and spectral integration (13.5 ms) are required,
which are shared with the FFT-based solution.

6.2. Ringing at Dynamic Aperture Edges

Our NFD enables the simulation of an aperture pattern cropped by
the housing, as is typical for a composite lens. Here, some light rays
from the entrance pupil are consumed by the housing. Hence, light
reaching the iris aperture is already partially culled (often dubbed as
the cat’s eye effect). The NFD of such patterns becomes visible in
lens-flare ghosts [HESL11]. In contrast to previous work [HESL11,
LE13], our solution can handle these dynamic changes. Figure 15
shows examples of dynamic diffraction with cropped apertures.

6.3. Bloom/Glow Rendering

Bloom rendering is another application of our FFD technique, which
shows the halos of light sources or their reflections. Real-time render-
ing typically uses simple postfiltering [JO04], destroying significant
details. In our implementation, we create a glare pattern that incor-
porates dynamic lens effects (e.g., noise) and convolve it with the
scene image at a low resolution using pixel intensities as weights.
Thereby, we can capture the physical impact of source shapes in the
diffraction patterns (Figure 16).

7. Discussion and Limitations

We have shown the utility of our primitive-based FT and NFD in
terms of performance, quality, and flexibility in parametrization.
While standard pixel-based FT techniques have a fixed cost, our
primitive-based FT solution is able to employ many optimization
techniques. This results in a higher performance without quality
reduction in all proposed application scenarios.

Our experiments showed that reducing the number of quads is cru-
cial for higher performance. At present, we exploited only quads, but
integrating more primitives is an interesting direction. For instance,
a triangular mesh [HCL91, LLNZ11] can spawn less primitives, but

Figure 16: The examples of the realistic bloom rendering generated
with our FFD solution.

the hierarchical construction can be difficult. Investigating a full
vectorial representation is an interesting direction.

In addition to our solution of introducing negative quads when
extracting the list from the quadtree, we also described the merging
of neighboring quads into rectangles, which reduced the number of
primitives for FFD and NFD. Merging across several levels of the
quadtree is an interesting direction for future work. While promising,
the application of the shift property becomes more difficult.

Our approach is most efficient if larger homogeneous areas appear
in the input image. Natural images might lead to a larger quad set,
which eventually becomes equivalent to processing every pixel inde-
pendently, making our approach unpractical. On current hardware,
around 1500 quads can be handled very efficiently per frame. This
amount is largely sufficient for our application scenarios, especially
when using progressive refinement.

Acknowledgments

We would like to thank Dr. Timothy Balint for his assistance in
proof-reading this article. Monster Tree and Dragon models are
provided through the courtesy of GalaxyArt (turbosquid.com) and
the Stanford 3D Scanning Repository, respectively. This work was
supported in part by the Global Frontier R&D program (NRF grant
no. 2018M3A6A3058649) and the ITRC program (IITP- 2018-2016-
0-00312), funded by the Korea Government, and VIDI NextView,
funded by NWO Vernieuwingsimpuls. Correspondence on this arti-
cle can be addressed to Sungkil Lee.

Appendix A: Numerical solution for NFD integral

The NFD computation requires computing the following integral:∫ t

0
ei(ax+bx2)dx =

∫ t

0
cos(ax+bx2)dx+ i

∫ t

0
sin(ax+bx2)dx.

(21)
The Fresnel integrals C(x) and S(x) can express these terms as:∫ t

0
cos(ax+bx2)dx =

√
π√
2b

(cos
a2

4b
C(φt)+ sin

a2

4b
S(φt)) (22)

∫ t

0
sin(ax+bx2)dx =

√
π√
2b

(cos
a2

4b
S(φt)− sin

a2

4b
C(φt)), (23)

where φt =
a+2bt√

2πb
and C(t) and S(t) are defined as:

C(t) =
∫ t

0
cos(πx2/2)dx and S(t) =

∫ t

0
sin(πx2/2)dx. (24)

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

10 L. Scandolo, S. Lee & E. Eisemann / Quad-Based Fourier Transform for Efficient Diffraction Synthesis

In general, C(t) and S(t) do not have analytic solutions, and thus,
we use their numerical approximations [Mie98].

References
[BB17] BELCOUR L., BARLA P.: A practical extension to microfacet

theory for the modeling of varying iridescence. ACM Trans. Graphics 36,
4 (2017), 65. 2

[BW13] BORN M., WOLF E.: Principles of optics: electromagnetic theory
of propagation, interference and diffraction of light. Elsevier, 2013. 3

[CHB∗12] CUYPERS T., HABER T., BEKAERT P., OH S. B., RASKAR
R.: Reflectance model for diffraction. ACM Trans. Graphics 31, 5 (2012),
122. 2

[CT65] COOLEY J. W., TUKEY J. W.: An algorithm for the machine
calculation of complex Fourier series. Mathematics of computation 19,
90 (1965), 297–301. 2

[DG16] DHILLON D. S. J., GHOSH A.: Efficient surface diffraction ren-
derings with Chebyshev approximations. In SIGGRAPH ASIA Technical
Briefs (2016), ACM, p. 7. 2

[DWMG15] DONG Z., WALTER B., MARSCHNER S., GREENBERG
D. P.: Predicting appearance from measured microgeometry of metal
surfaces. ACM Trans. Graphics 35, 1 (2015), 9. 2

[FJ98] FRIGO M., JOHNSON S. G.: FFTW: An adaptive software archi-
tecture for the FFT. In Proc. Acoustics, Speech and Signal Processing
(1998), vol. 3, pp. 1381–1384. 2, 6

[FL04] FAN G.-X., LIU Q. H.: Fast Fourier transform for discontinuous
functions. IEEE Trans. Ant. and Prop. 52, 2 (2004), 461–465. 2

[FPV∗09] FRANCHETTI F., PUSCHEL M., VORONENKO Y., CHELLAPPA
S., MOURA J. M.: Discrete Fourier transform on multicore. IEEE Signal
Processing Magazine 26, 6 (2009). 2

[GLD∗08] GOVINDARAJU N. K., LLOYD B., DOTSENKO Y., SMITH
B., MANFERDELLI J.: High performance discrete Fourier transforms on
graphics processors. In Proc. Supercomputing (2008), p. 2. 2

[HCL91] HOUSHMAND B., CHEW W. C., LEE S.-W.: Fourier transform
of a linear distribution with triangular support and its applications in
electromagnetics. IEEE Trans. Ant. and Prop. 39, 2 (1991), 252–254. 2,
9

[HESL11] HULLIN M., EISEMANN E., SEIDEL H.-P., LEE S.:
Physically-based real-time lens flare rendering. ACM Trans. Graph. 30, 4
(2011), 108:1–108:9. 1, 2, 4, 5, 6, 8, 9

[HIKP12] HASSANIEH H., INDYK P., KATABI D., PRICE E.: Simple
and practical algorithm for sparse Fourier transform. In Proc. ACM-SIAM
Symp. Discrete Algorithms (2012), pp. 1183–1194. 2

[HP17] HOLZSCHUCH N., PACANOWSKI R.: A two-scale microfacet
reflectance model combining reflection and diffraction. ACM Trans.
Graphics 36, 4 (2017), 66. 2

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: ManyLoDs: Parallel many-view level-of-detail
selection for real-time global illumination. Computer Graphics Forum
30, 4 (2011), 1233–1240. 5

[JO04] JAMES G., O’RORKE J.: Real-time glow. In GPU Gems, Fernando
R., (Ed.). Addison Wesley Professional, 2004, pp. 343–362. 9

[Kin75] KINTNER E. C.: Edge-ringing and Fresnel diffraction. Optica
Acta: International Journal of Optics 22, 3 (1975), 235–241. 5

[KMN∗04] KAKIMOTO M., MATSUOKA K., NISHITA T., NAEMURA T.,
HARASHIMA H.: Glare generation based on wave optics. In Proc. Pacific
Graphics (2004), pp. 133–140. 1, 2, 6, 9

[LA06] LINDSAY C., AGU E.: Physically-based real-time diffraction
using spherical harmonics. Advances in Vis. Comp. (2006), 505–517. 2

[LE13] LEE S., EISEMANN E.: Practical real-time lens-flare rendering.
Computer Graphics Forum 32, 4 (2013), 1–6. 9

[LHP17] LUCAT A., HEGEDUS R., PACANOWSKI R.: Diffraction predic-
tion in HDR measurements. In Proc. Eurographics Workshop on Material
Appearance Modeling (2017). 2

[LLNZ11] LIU Y.-H., LIU Q., NIE Z.-P., ZHAO Z.-Q.: Discontinuous
fast Fourier transform with triangle mesh for two-dimensional discontinu-
ous functions. J. Electromag. Waves and Appl. 25, 7 (2011), 1045–1057.
2, 9

[LM83] LEE S.-W., MITTRA R.: Fourier transform of a polygonal shape
function and its application in electromagnetics. IEEE Trans. Ant. and
Prop. 31, 1 (1983), 99–103. 1, 2

[LNL08] LIU Y., NIE Z., LIU Q. H.: DIFFT: A fast and accurate algo-
rithm for Fourier transform integrals of discontinuous functions. IEEE
Microwave and Wireless Components Letters 18, 11 (2008), 716–718. 2

[MA03] MORELAND K., ANGEL E.: The FFT on a GPU. In Proc.
Graphics Hardware (2003), Eurographics Association, pp. 112–119. 2

[Mie98] MIELENZ K. D.: Algorithms for Fresnel diffraction at rectangular
and circular apertures. J. Research of the National Institute of Standards
and Technology 103, 5 (1998), 497. 6, 10

[MS91] MCINTURFF K., SIMON P. S.: The Fourier transform of linearly
varying functions with polygonal support. IEEE Trans. Ant. and Prop. 39,
9 (1991), 1441–1443. 1, 2

[NKON90] NAKAMAE E., KANEDA K., OKAMOTO T., NISHITA T.: A
lighting model aiming at drive simulators. ACM Trans. Graphics 24, 4
(1990), 395–404. 2

[Oat04] OAT C.: A steerable streak filter. In Shader X3, Engel W., (Ed.).
Charles River Media, 2004, pp. 341–348. 2

[OZK01] OZAKTAS H. M., ZALEVSKY Z., KUTAY M. A.: The fractional
Fourier transform with applications in optics and signal processing. Wiley,
2001. 8

[PW15] PEATROSS J., WARE M.: Physics of Light and Optics. Bringham
Young University, 2015. 1, 3, 5

[RIF∗09] RITSCHEL T., IHRKE M., FRISVAD J. R., COPPENS J.,
MYSZKOWSKI K., SEIDEL H.-P.: Temporal glare: Real-time dynamic
simulation of the scattering in the human eye. Computer Graphics Forum
28, 2 (2009), 183–192. 1, 2, 5, 9

[Rok93] ROKITA P.: A model for rendering high intensity lights. Comput-
ers & graphics 17, 4 (1993), 431–437. 2

[Sor95] SORETS E.: Fast Fourier transforms of piecewise constant func-
tions. Journal of Computational Physics 116, 2 (1995), 369–379. 2

[SSZG95] SPENCER G., SHIRLEY P., ZIMMERMAN K., GREENBERG
D. P.: Physically-based glare effects for digital images. In Proc. ACM
SIGGRAPH (1995), ACM, pp. 325–334. 1, 2, 9

[Sta99] STAM J.: Diffraction shaders. In Proc. ACM SIGGRAPH (1999),
ACM, pp. 101–110. 2

[TG17] TOISOUL A., GHOSH A.: Practical acquisition and rendering
of diffraction effects in surface reflectance. ACM Trans. Graphics 36, 5
(2017), 166. 2

[TLZ10] TAO R., LIANG G., ZHAO X.-H.: An efficient FPGA-based
implementation of fractional Fourier transform algorithm. J. Signal Proc.
Systems 60, 1 (2010), 47–58. 8

[WSS13] WYMAN C., SLOAN P.-P., SHIRLEY P.: Simple analytic ap-
proximations to the CIE XYZ color matching functions. Journal of
Computer Graphics Techniques 2, 2 (2013), 1–11. 4

[WVJH17] WERNER S., VELINOV Z., JAKOB W., HULLIN M. B.:
Scratch iridescence: Wave-optical rendering of diffractive surface struc-
ture. ACM Trans. Graphics 36, 6 (2017), 220:1–11. 2

[YF74] YAP B. K., FANTONE S. D.: Application of a sunburst aperture
to diffraction suppression. JOSA 64, 7 (1974), 978–982. 1, 2

[YIMS08] YOSHIDA A., IHRKE M., MANTIUK R., SEIDEL H.-P.:
Brightness of the glare illusion. In Proc. Symp. Applied Perception in
Graphics and Visualization (2008), pp. 83–90. 1

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Computer Graphics Forum, https: //doi.org/10.1111/cgf.13484.

