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A B S T R A C T   

Plastic pollution in the sea is an environmental hazard, negatively impacts marine life, and causes economic 
damage all over the world. It is estimated that each year 8 million tonnes of plastic are deposited in seas, the vast 
majority coming from rivers. In recent years, publicly available satellite imagery has been used to attempt to 
track floating plastic debris, using specialized hand-crafted features. In this work, we present an automatic 
learning approach based on satellite imagery that can detect floating plastic debris in rivers with high precision. 
This approach is based on well-proven image segmentation architectures, U-Net (RonnebeRger et al., 2015) and 
DeeplabV3+ (Chen et al., 2018), which we adapt to process high-dimensional multispectral images. To train and 
test the approach, we also present a dataset of images from different rivers around the world containing floating 
plastic debris, which is a key step to creating an automated learning solution. We test the predictive accuracy of 
our network, showing that our approach can correctly identify floating debris in images from regions not seen in 
the training set. Our results also show that a more extensive labeled dataset is necessary to generalize the 
approach to some types of rivers. Furthermore, we also demonstrate how our solution can also be used to monitor 
single areas over time to understand and predict floating debris accumulation.   

1. Introduction 

Plastic pollution in oceans and rivers is one of the most pressing 
environmental problems nowadays. The production of plastics reached 
359 million tons in 2018 (PlasticsEurope, 2019), and by 2050 there will 
be a yearly production of 2 billion tons (United Nations Environment 
Programme, 2016). It is estimated that roughly 8 million tons of plastic 
are deposited at sea each year, which constitutes 80% of the total ocean 
waste (United Nations Environment Programme, 2017). The costs 
associated with the problems caused by this pollution to the fishing in
dustry, wildlife, and tourism are predicted to be at least 8 billion dollars 
(United Nations Environment Programme, 2017). When plastic reaches 
the water, depending on its composition, part of it sinks and part of it 
remains afloat (Biermann et al., 2020). Plastic gradually breaks down in 
the water and becomes microplastics, which are often ingested by marine 
life, and are much more difficult to extract and recycle (Biermann et al., 
2020). If current plastic pollution trends continue, it is estimated that by 
2050 there will be more plastic than fish in the oceans and that 99% of 
seabirds will have ingested plastic (United Nations Environment Pro
gramme, 2017). One large contributor to ocean plastics are rivers that 
carry garbage as they cross cities and ultimately deposit it at sea (Leb
reton et al., 2012; Cózar et al., 2015). Cleaning up this garbage is a 
complicated task, and the first step towards it is identifying garbage 
patch locations so that it can be cleaned up and recycled. 

In the past, fishermen looked at the reflection of the water in the 
clouds to find areas containing shoals of fish, as they have different 

reflectance properties than seawater. More recently aerial and satellite 
imagery allow us to use the same principle but at a larger scale for the 
purpose of detecting floating plastic and debris. Jakovljević et al. (2019) 
developed an algorithm to detect garbage from the Drina river using 
neural networks and high-resolution satellite images (ground sample 
distance of 46 cm) from WorldView-2 (European space agency, 2009). 
They study several areas of the river with large amounts of garbage and 
show a methodology for using Google Earth Engine (Gorelick et al., 
2017) for the preparation and preprocessing of the data. Garaba et al. 
(2018), from The Ocean Cleanup Foundation, collected airborne imag
ery from the Pacific ocean and studied the spectral fingerprint of 
different types of debris. Their approach confirms that wavelengths 
around 1215 nm and around 1732 nm have potential use for plastic 
detection applications using multispectral images, which coincides with 
other publications (Jakovljević et al., 2019; Garaba and Dierssen, 2018; 
Martínez-Vicente et al., 2019; Serranti et al., 2018). Garaba and Dierssen 
(2018) extracted macro- and microplastics from the ocean to study its 
composition and reflective properties, noting that typical floating plastic 
debris has a varied composition and is not an exact match for any single 
polymer source, although it still exhibits high absorption characteristics 
in the infrared band. Martínez-Vicente et al. (2019) explore the re
quirements for a satellite sensor platform that can detect marine plastic 
debris, and state that the NIR and SWIR bands are the most relevant to 
marine plastic debris detection. Serranti et al. (2018) analyze marine 
debris collected by surface-trawling plankton nets with a hyperspectral 
sensor and use the SWIR wavelengths to characterize different polymer 
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types. Hu (2021) conducted a theoretical and practical study on the 
requirements and potentials of using the visible range and near-infrared 
range for the detection of marine debris. They theoretically determine 
the minimum proportion of subpixel coverage necessary for the detec
tion of microplastics based on the sensitivity and the SNR of the sensor, 
suggesting that microplastic detection is technically impossible using all 
existing sensing platforms, but that macroplastic detection is possible. 
They also conclude that separating macro plastics and other types of 
debris is very difficult given their very similar spectrum, although ma
rine debris is usually a mixture of different materials, so differentiation 
may not be necessary. Topouzelis et al. (2019) explore the usage of a 
lower resolution satellite with global coverage, Sentinel-2, for the 
detection of debris in coastal areas. Near the beach of Tsamakia on the 
island of Lesbos (Greece), they deployed floating platforms filled with 
different types of plastics in order to study the results when captured by 
an aerial sensing platform and the Sentinel-2 satellite mission. This is 
part of the University of the Aeagan’s Plastic Litter Project (University of 
the Aegean Marine Remote Sensing Group, 2018; University of the 
Aegean Marine Remote Sensing Group, 2019; University of the Aegean 
Marine Remote Sensing Group, 2020). They repeated the experiment for 
three years and presented a dataset detailing the dates and coordinates 
of their platforms. Fig. 1 shows these platforms as seen from Sentinel-2, 
and we can observe that in the Near-Infrared Band (NIR) band, we can 
visualize the platforms better than in the RGB bands. Their work dem
onstrates the different spectral responses corresponding to different 
plastic types, as well as the percentage of area coverage within the 
footprint of a satellite image. Recent work by Biermann et al. (2020) 
shows the feasibility of using Sentinel-2 for the detection of garbage and 
other floating materials. Their approach is to select specific Sentinel-2 
pixels of areas suspected of containing floating plastic debris found by 
monitoring news and social media. The satellite imagery pixels are then 
validated by analyzing their spectral footprint and classified using a 
naïve Bayes classification algorithm. They present a new feature called 
Floating Debris Index (FDI), which is based on the Floating Algae Index 
(FAI) (Hu, 2009). This new feature makes use of the linear interpolation 
between the NIR band and its two contiguous bands, the Red Edge 2 
(RE2) and the Short Wave Infrared Band 1 (SWIR1). The purpose of the 
FDI is to improve the NIR band via subtracting the linear interpolation of 
its contiguous bands in order to minimize sensitivity to atmospheric 
changes and be able to detect floating objects through thin clouds. 

Images from satellite sensors capture reflected light in visible and 
non-visible frequency ranges on an almost global scale with high peri
odicity and resolution. In particular, Sentinel-2 is a European Space 
Agency (ESA) (European Space Agency, 2015a) mission consisting of 
two satellites that capture nearly all global inland regions, coastal areas, 
and the Mediterranean Sea every two to five days. Sentinel-2 captures 12 
spectral bands, ranging from the visible spectrum to shortwave infrared. 
Each wavelength is captured at different spatial resolutions, from 10 to 
60 meters per pixel. In this paper, we present a learning-based image 
segmentation approach that is able to identify floating plastics and other 
debris in rivers present in Sentinel-2 imagery. We first create a dataset of 
labeled images from various rivers and urban areas that we use for 

training. We compiled and manually labeled such collection based on 
previous work (Jakovljević et al., 2019), and news reports of heavily 
polluted rivers. We use this dataset to test and validate several state-of- 
the-art neural network architectures typically used for natural image 
segmentation and classification. Additionally, we propose several 
architectural modifications in order to accommodate the increase in 
input channels and improve precision, resulting in high segmentation 
accuracy that can be used to identify new areas with floating debris 
accumulation or to monitor specific regions known to accumulate 
debris. 

2. Materials and methods 

In this section, we will first introduce our dataset, which comprises 
manually labeled images of rivers from the Sentinel-2 mission. This 
dataset was compiled to be used for training and testing different neural 
network architectures designed for the purpose of multispectral image 
segmentation. We will then detail the neural network architectures we 
consider for the segmentation task and details regarding their training. 
We tested two well-known and high-performing architectures for clas
sification and segmentation: U-Net (Ronneberger et al., 2015; Roy et al., 
2019) and Deeplab V3+ (Chen et al., 2018). We additionally propose 
and evaluate a modified U-Net architecture, which we named U-Net3DE, 
and uses 3D convolutions along the encoding path in order to exploit 
contextual spectral information. 

2.1. Sentinel-2 satellite imagery 

Sentinel-2 is a terrestrial observation mission from the European 
Space Agency (ESA) (European Space Agency, 2015a) that consists of 
two satellites, named S2A and S2B, phased 180◦ that orbit around the 
earth synced with the sun. It has a coverage of almost all inland areas 
between 59◦ South to 84◦ North and all coastal waters around them, as 
well as the Mediterranean Sea, and revisits areas near the equator every 
5 days, and mid-latitude areas every 2–3 days. It is designed for tasks 
such as forest monitoring, agricultural fields monitoring, and managing 
natural disasters. Its sensors offer 12 bands ranging from the visible 
spectrum to near-infrared and short wave infrared at different resolu
tions depending on the band, and slightly different wavelengths per- 
satellite (see Table 1). 

Previous works (Garaba et al., 2018; Jakovljević et al., 2019; Garaba 
and Dierssen, 2018; Martínez-Vicente et al., 2019) point at wavelengths 
around 1215 nm and around 1732 nm as the most useful to identify 
patches of plastic and debris. SWIR1 is closest to 1732 nm and has a 
resolution of 20 meters. Bands B9, B8A, B8 are close to 1215 nm, with a 
resolution of 60, 20, 10 meters respectively. Band B8 is especially useful 
because it displays high reflectance properties for garbage when 
compared to the RGB spectrum (Topouzelis et al., 2019). Further, it has 
a good spatial resolution. 

The Sentinel-2 catalog offers two types of images with different 
corrections, Level 1C imagery and Level 2A imagery. Level-1C imagery 
applies radiometric and geometric corrections to the images, including 

Fig. 1. Sentinel-2 images from the platforms installed in Lesbos (Greece) as part of the Plastic Litter Project (Topouzelis et al., 2019).  
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orthocorrection. This process unifies the resolution of the band images 
in order to have the same resolution for all bands. Further, it provides 
masks for clouds and land/water, and compresses images using 
JPEG2000. Level 2-A imagery atmospherically corrects the Level-1C 
imagery with Sen2Cor (Main-Knorn et al., 2017), and also creates a 
scene classification map. Atmospheric correction consists of removing 
artifacts caused by the atmosphere but needs to be carefully considered, 
as it can modify or delete the spectral fingerprint of some materials. We 
used level 2-A images in our dataset because in our tests the atmospheric 
correction provided by level 1-C images yielded no improvements over 
the original data. 

2.2. Generation of the datasets 

To access and process Sentinel-2 images, we used Google Earth En
gine (Gorelick et al., 2017), which is a platform for geospatial analysis 
and provides tools to create scripts for visualization and classification. 
To the best of our knowledge, there is no publicly available labeled 
dataset of satellite imagery of floating plastics or other debris. Previous 
works (Garaba et al., 2018; Biermann et al., 2020) provide insights into 
the spectral signature of plastics in seas and oceans and mention 
analyzed areas, which provides a good starting point to locate debris in 
multispectral images. 

We focused our efforts on classifying debris in rivers and near-coastal 
areas, since they are covered by Sentinel-2. In particular, we spent 
considerable effort finding areas with large and visible pollution patches 
for manual labeling. Although large amounts of floating plastic debris 
exist in many rivers, it is not always possible to identify it manually 
through Sentinel-2 imagery. Most debris accumulation happens in the 
wake of flooding, as flooded rivers next to garbage dumps can carry 
large amounts of debris. Nevertheless, these areas typically remain 
clouded for days, which can prevent satellite imagery from being useful. 
Another problem for manual labeling is the low resolution of Sentinel-2 
imagery in some regions, which makes debris detection difficult, as was 
the case in Accra, Ghana (Chasant, 2020). Based on various articles, 
news, and publications found via hashtags in social media, we identified 
areas with garbage content large enough to be detected in Sentinel-2 
imagery, and which we could confidently determine as floating 
garbage and not any other phenomenon. 

2.3. Dataset locations 

Our dataset primarily consists of satellite imagery from three rivers, 
the Drina River, the Los Angeles River, and the Yangtzee River. The 
Drina River is located in the Balkans and borders between Serbia, Bos
nia, and Herzegovina. River level rises cause garbage from adjacent 
landfills to be dragged downstream (Jakovljević et al., 2019; Associated 
Press, 2020). There is a net installed along the river upstream from the 
Višegrad Hydroelectric Power Plant to prevent garbage from continuing 
downstream. The garbage it accumulates is visible on Sentinel-2 

imagery (see Fig. 2, left). The Los Angeles River in Los Angeles, USA uses 
special floating screens (Barboza, 2020) to prevent debris from reaching 
the sea (see Fig. 2, middle). The accumulation of debris in the net is 
visible in Sentinel-2 imagery. The Yangtze River in China is considered 
one of the most polluted rivers and one of the major polluters of the 
oceans at its mouth in the East China Sea. The largest hydroelectric dam 
in the world, the Three Gorges Dam, is located near Sandouping, 
Yichang, Hubei province and acts as a retaining wall for a lot of the 
floating debris in the river (Three Gorges dam ’could be blocked by 
rubbish’, 2020). Zhang et al. (2015) demonstrated the presence of a 
large number of microplastics in the Three Gorges Dam basin. According 
to Hu (2021), it is not possible to detect microplastics with the sensi
tivity of the Sentinel-2 sensors. However, the presence of microplastics is 
a strong indicator that there is a nearby area where macroplastics are 
breaking down. We identified dates when considerable amounts of 
debris are present (see Fig. 2, right). 

Our dataset (see Table 2) contains images from selected dates in the 
previously described areas, where debris is visible, and several dates 
when there is no visible debris. The surrounding areas from the Drina 
River and the Yangtze River consist mostly of vegetation, whereas the 
Los Angeles River is surrounded mainly by urban and industrial areas. In 
order to provide further examples of urban environments, we added 
images of the industrial and the harbor areas from San Francisco, as well 
as images from the center of Barcelona. We followed a labeling meth
odology based on three classes: water, debris, and other. This last label 
comprises soil, forest, city, vehicles, etc. 

Previous works (Garaba et al., 2018; Biermann et al., 2020) have 
shown that the spectral reflectance of plastic materials has a minimum 
around 945 nm (B9 in Sentinel-2) and a maximum around 1613.7 nm 
(B11 in Sentinel-2), and plastics, wood, and seaweed have a maximum in 
the B8 band. These findings aided our manual labeling efforts and can be 
seen in the debris spectrum of our dataset (Fig. 3). Identified debris 
pixels have a maximum around the B8 and B8A band, a minimum in the 
B9 band, and another maximum in the B11 band. Furthermore, in the 
Yangtze and Drina River images, there is a sharp increase at the B5 band 
(703.9 nm) in pixels classified as other, which is expected as vegetation 
reflects light above ∼ 700nm (Biermann et al., 2020; Myneni et al., 
1995). In contrast, the Los Angeles River images show high reflectance 
in almost all bands, caused by highly reflective urban construction 
materials. Fig. 4 shows an example of the band values for a single image 
of the Drina River. 

We followed the methodology described by Biermann et al. (2020) to 
manually label our dataset. First, we monitored news publications, 
hashtags, and keywords to find articles or social networks posts that 
show regions suitable for our work (Jakovljević et al., 2019; Associated 
Press, 2020; SCPR, 2019; Trash Accumulates at Three Gorges Dam, 
2020; Three Gorges dam ’could be blocked by rubbish’, 2020). We then 
matched the dates and the locations with sentinel imagery, and once a 
region with debris was established, we revised historical data on the 
same region to obtain further samples. For the validation of the garbage 
patches, we used Snap software to check the spectra, as well as well- 
known index values (FDI, NDVI, and NDWI), aided also by available 
reference values corresponding to similar publications on the topic 
(Biermann et al., 2020; Garaba et al., 2018; Jakovljević et al., 2019; 
Garaba and Dierssen, 2018; Martínez-Vicente et al., 2019). 

2.4. Neural networks for image segmentation 

In recent years, the use of neural networks for image classification 
tasks has grown immensely, spearheaded by the work of LeCun et al. 
(1998). Simonyan and Zisserman (2015) introduced the 16 layer Visual 
Geometry Group (VGG16) architecture for image classification and 
identification tasks. Long et al. (2015) extended the work from Simon
yan et al. and created the Fully Convolutional Network (FCN). This 
network was developed for image segmentation purposes and was able 
to predict images instead of vectors. Ronneberger et al. (2015) 

Table 1 
Sentinel-2 bands with their respective resolution, wavelength for each satellite 
(S2A and S2B), and brief description.  

Band Wavelength (S2A/S2B) Resolution Description 

B1 443.9 nm/ 442.3 nm 60 meters Aerosols 
B2 496.6 nm/ 492.1 nm 10 meters Blue 
B3 560.0 nm/ 559.0 nm 10 meters Green 
B4 664.5 nm/ 665.0 nm 10 meters Red 
B5 703.9 nm/ 703.8 nm 20 meters Red Edge 1 
B6 740.2 nm/ 739.1 nm 20 meters Red Edge 2 
B7 782.5 nm/ 779.7 nm 20 meters Red Edge 3 
B8 835.1 nm/ 833.0 nm 10 meters NIR 
B8A 864.8 nm/ 864.0 nm 20 meters Red Edge 4 
B9 945.0 nm/ 943.2 nm 60 meters Water vapor 
B11 1613.7 nm/ 1610.4 nm 20 meters SWIR 1 
B12 2202.4 nm/ 2185.7 nm 20 meters SWIR 2  
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developed a network for medical image segmentation called U-Net, 
which was inspired by the FCN architecture, with the addition of skip 
layers in all the pooling layers. U-Net is one of the best-known 

architectures for image segmentation tasks. 
Zhou et al. (2019, 2018) modified U-Net using modern backbones 

such as the Residual Neural Network (Resnet) (He et al., 2016), Dense 
Convolutional Network (Densenet) (Huang et al., 2017), Inception 
(Szegedy et al., 2015) or Xception (Chollet, 2017). 

Other architectures for image segmentation have been proposed, 
such as the Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017). 
This approach exploits pyramid pooling modules to improve segmen
tation results. Following the same idea, Chen et al. proposed a con
volutional network architecture for image segmentation containing 
fully-connected conditional random fields called DeeplabV3+ (Chen 
et al., 2018). DeeplabV3 + makes use of the pyramid to have multiple 
representations of the same features, as well as atrous convolutions. 
DeeplabV3 + achieves sharper segmentation results and is currently one 
of the state-of-the-art approaches for image segmentation. 

2.5. Tested Network architectures 

We tested three different architectures in the task of floating debris 
detection in our described dataset (Table 2): U-Net, U-Net3DE, and 
Deeplab V3+. 

U-Net (Ronneberger et al., 2015) is one of the most widely used 
network architectures for image classification and segmentation tasks. It 
is based on the Fully Convolutional Neural Network (FCN) (Long et al., 
2015) architecture, with the addition of a skip layer between each 
pooling layer and a transposed convolution upsample path. 

Our proposed U-Net3DE architecture is based on U-Net. We modified 
the original U-Net architecture, similar to the work of Roy et al. (2019, 
2020), to use 3D convolutions as their work shows that using 3D con
volutional layers improves classification-task results over using separate 
per-band convolutions, as filters can access and encode information on 
neighboring spectral bands. The encoder stage of our U-Net3DE uses 3D 
convolutional layers with a 2D decoder for segmentation. At each skip 
layer we reshape the output-feature cubes to 2D feature maps by 
concatenating the output of the 2D convolutional transposed layer. At 

Fig. 2. Sentinel-2 images of debris at the Drina River (left), the Los Angeles River (center), and the Three Gorges Dam along the Yangtze River in China (right).  

Table 2 
Labeled dataset used for our experiments. Used labels are debris (D), water (W) 
and other (O).  

Region Coordinates Date Label Usage   

15/01/2019 D/W/O    
09/02/2019 D/W/O    
24/02/2019 W/O    
01/03/2019 D/W/O    
31/03/2019 D/W/O    
25/04/2019 D/W/O  

Drina River 43.756455, 19.273323 14/06/2019 D/W/O Training   
06/07/2019 D/W/O    
22/10/2019 W/O    
20/03/2020 D/W/O    
04/05/2020 D/W/O    
28/06/2020 W/O    
03/07/2020 W/O    
08/07/2020 W/O     

04/08/2018 D/W/O    
14/08/2018 D/W/O    
19/08/2018 D/W/O    
03/09/2018 D/W/O  

Yangtze River 30.828716, 111.008711 25/07/2019 D/W/O Training   
28/09/2019 D/W/O    
09/07/2019 D/W/O    
15/04/2020 W/O    
10/05/2020 W/O   

Barcelona 41.390528, 2.149071 17/05/2020 O Training 
San Francisco 37.757826, − 122.378724 04/05/20 W/O Training   

09/01/2019 D/W/O    
24/01/2019 D/W/O  

Los Angeles 33.764164, − 118.205894 05/12/2019 D/W/O Test   
04/01/2020 D/W/O    
29/03/2020 W/O   

Fig. 3. Top of atmosphere spectral values from the different regions of our dataset according to their classification.  
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the end of the encoder we also reshape the output cubes to 2D feature 
maps and use these as an input to the decoder stage. For the pooling 
layers, we implemented a 3D pooling that halves the height, length, and 
number of bands. Since Sentinel-2 has 12 bands, the 3D pooling layers 
are only implemented in the first two pooling layers. Past the second 
pooling layer, we only have three bands and the pooling layers only 
halve the height and the length of the cubes, not the number of bands. 
Although this modified architecture leads to slightly fewer parameters 
than a conventional U-Net network for this task (see Table 3), the 
training is slower given the larger convolutional kernels. Fig. 5 shows an 
overview of the U-Net3DE architecture and a detailed view of the 
encoder. 

Deeplab V3+ (Chen et al., 2018) is the current state-of-the-art ar
chitecture for semantic segmentation. Hoeser and Kuenzer (2020) tested 
different deep learning architectures for multispectral and hyperspectral 
images and concluded that DeeplabV3 + reaches the best results for 
segmentation tasks. This architecture is the latest update from the 
DeepLab family (Chen et al., 2017) and it adds an encoder-decoder 
structure like U-Net instead of using naïve decoder architectures like 
the rest of the DeepLab family. This change in the architecture refines 
the results, especially for label boundaries. Fig. 6 shows the imple
mentation used for our experiments. 

We tested two backbone implementations for DeepLab V3+: Xcep
tion (Chollet, 2017) and MobileNet V2 (Sandler et al., 2018). According 
to the work of Hoeser and Kuenzer (2020), Xception leads to better re
sults as a backbone. Nevertheless, we also tested MobileNet V2 since it 
contains significantly fewer parameters, which leads to faster training 
and can prevent overfitting given limited data. 

2.6. Network Training 

Data augmentation was performed on the input dataset in order to 
obtain an extended training set and improve the robustness of the 
learned features. Standard data augmentation transforms were used, 
such as affine transforms, noise addition, and blurring and sharpening 
operations. As the Sentinel-2 dataset regularly contains defective 
(completely null) pixels, such pixels were also randomly added as an 
augmentation technique. We assign black regions a special class with 
null weight in the loss function in order to ignore them during training, 
which is also employed to handle potential black pixels arising from 
affine transforms due to zero padding outside the image boundaries. 

An issue with our dataset stems from the large class imbalance, as 

most pixels are labeled as water and other, but comparatively few are 
labeled as debris. To solve this problem, we use a weighted loss function, 
which emphasizes results for underrepresented classes in the dataset. 
Our loss function is therefore a weighted cross entropy: 

L = −
∑3

n=0
ωiyilog(Si) (1)  

ωi =

⎧
⎪⎨

⎪⎩

0 if i = 0
Total Samples

Samples class⋅3
if i ∕= 0

(2)  

In Eq. (1), ωi is the weight for each class, yi is the ground truth label, and 
Si represents the output from a softmax function. Eq. (2) shows the 
formula used to compute class weights. Class 0 corresponds to black 
pixels, which do not contribute to the loss value. For the rest of the 
classes, we compute their weight as the inverse ratio of class pixels to the 
total amount of pixels, scaled by 1/3 to have a similar magnitude. 

Based on the work of Choi et al. (2019), we use an Adam optimizer 
for our experiments due to its fast convergence time and low validation 
error. The Adam parameters used for our experiment were learning rate 
0.001,β1 = 0.9,β2 = 0.999, and ∊ = 10− 7. Due to memory limitations, 
we used a batch size of 4 images. 

3. Results 

The network training was performed on an Intel i7-3820 with 16 Gb 
of RAM and an Nvidia GTX 980 Ti GPU, as well as using the Google 
Colab (Bisong, 2019) service. All training and evaluation code was 
written with the Tensorflow API for Python. 

We trained and tested the different architectures introduced in Sec
tion 2.5, using the dataset presented in Table 2. As such, our results show 
the classification performance of each architecture for the Los Angeles 
River images, which is an area that is not present in the training set. 
Table 4 shows the mean Intersection over Union (IoU) and the IoU re
sults for each class for all the different architectures. The IoU value for a 
label consists of the ratio between the intersection of the pixels with a 
specific label in the segmented image and the ground truth image, over 
the union of the pixels with that label in both versions. We achieve the 
best results in terms of garbage detection IoU when using U-Net3DE and 
Deeplab V3 + using the Xception backbone (DV3X). All architectures 
achieve similar results in terms of water and other pixel detection. This 
suggests that U-Net and Deeplab V3 + using the Mobilenet backbone 
(DV3M) are a better choice for water detection tasks in remote sensing 
images, since they are faster to train due to the lower number of train
able parameters, as noted in Table 3. U-Net3DE was the slowest network 
to train, but interestingly, it contains less trainable parameters than 
DeeplabV3 + or U-Net, since parameters are shared between layers 
when performing 3D convolutions. Its 3D convolutions are also the 
cause of the slower training performance because they have a large 

Fig. 4. Top of atmosphere reflectance of the different bands of a Drina River image of our dataset, from 20/03/20.  

Table 3 
Trainable parameters from each architecture.  

Network Trainable Parameters 

U-Net 31,113,188 
U-Net3DE 29,105,972 
Deeplab V3 + Mobilenet V2 backbone 2,111,780 
Deeplab V3 + Xception backbone 41,053,636  
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memory footprint and are not as well optimized in our framework as 2D 
convolutions. 

Fig. 7 shows the confusion matrix for the different architectures, 
providing further insight into their per-class performance. In all cases, 
we achieve roughly 80% to 90% accuracy for debris pixels and very high 
prediction performance for the remaining two labels. These results are 
affected by the class imbalance in our dataset. The debris class has a low 
representation in our dataset, so mislabeling even a few pixels can 
greatly alter the confusion matrix, which partly explains the lower 
correct classification percentage for such pixels. For the case of DV3M, 
water pixels are sometimes also more commonly mislabeled as other 
pixels. This is a common issue in satellite image classification, especially 

Fig. 5. U-Net3DE architecture (left) and a detailed view of the encoder module (right).  

Fig. 6. DeeplabV3 + Architecture.  

Table 4 
Intersection-over-union test results for the different architectures tested, using 
the dataset as described in Table 2.   

IoU 
water 

IoU 
debris 

IoU 
other 

Mean 
IoU 

U-Net 0.84 0.29 0.96 0.69 
U-Net3DE 0.87 0.61 0.97 0.82 
Deeplab V3 + Mobilenet V2 

backbone (DV3M) 
0.81 0.26 0.96 0.68 

Deeplab V3 + Xception backbone 
(DV3X) 

0.89 0.61 0.97 0.82  
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in the presence of shadows and buildings (Xu, 2006). 
Fig. 8 shows the RGB channels from the input image, the ground 

truth, and the predicted labels for the different architectures tested in a 
subset of the test set corresponding to the Drina River. DV3X shows the 
best results in terms of similarity with the ground truth. In all scenes 
with no debris pixels, classification works correctly and edges between 
labels are sharp. DV3M shows that using the Mobilenet backbone results 
in less sharp edges when compared to the Xception backbone, e.g., the 
two bridges that cross the river in Fig. 8 and spurious debris labels 
assigned to pixels in the lower-left corner of the image. This explains the 
reduced performance of DV3M for water pixels since it tends to mislabel 
water pixels in the river banks as other pixels. U-Net3DE shows an 
improvement over U-Net, mainly due to more accurate predictions at 
edges between debris and other labeled pixels, as well as avoiding 
misclassification of pixels in the lower-left part of Fig. 8, which are 
highlighted with red circles. We observed that dark areas due to 
shadows corresponding to the other label are sometimes classified as 
water in both approaches; this is highlighted with blue circles in Fig. 8. 
In practice, confusion between water and other pixels is not of great 
importance in our task, and can additionally be corrected by using freely 
available geographic databases, such as open OpenStreetMap (Haklay, 

2010). 
Additionally, we trained and tested a more conventional fully con

nected multi-layer perceptron for the same task. Such an architecture 
provides no implicit spatial ordering of the pixels of the image. As such, 
multilayer perceptrons are typically outperformed by convolution-based 
networks in image tasks, for which convolutional networks can exploit 
the image structure and regularity. We observed similar results for our 
use case, as seen in Fig. 9. The multilayer perceptron architecture can 
mostly distinguish water from other labeled pixels, but it misclassifies a 
large part of the image as debris. The used architecture contained two 
fully connected layers, the first one with 512 neurons and the second one 
with 1024 neurons for a total of 535,043 trainable parameters. The 
number of layer quantity and their sizes were determined using hyper
parameter tuning. 

In Fig. 9, we also showcase the results of the method proposed by 
Biermann et al. (2020), which relies on a naïve Bayes classifier that uses 
the FDI and NDVI values of the image pixels for classification. We 
trained the classifier using our dataset, balancing classes to avoid 
overfitting. This approach resulted in an IoU score of 0.3, 0.0023, and 
0.378 for the water, debris, and other pixels respectively, indicating that 
the handcrafted indices are not a good fit for this particular classification 

Fig. 7. Confusion matrices for all the tested architectures for the Los Angeles River test set.  

Fig. 8. Test images for the different architectures tested. Red circles show areas with a considerable amount of false positive debris predictions, and blue circles show 
areas with a considerable amount of false positives water predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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problem. 

3.1. Cross-validation 

We also performed cross-validation of our dataset to test classifica
tion performance for the different regions. The DV3X architecture was 
used for these experiments since they achieved the best prediction rates 
in our previous tests (see Table 4). Fig. 11 shows the visual results of this 
experiment, and Fig. 10 shows the respective confusion matrices. We 
obtain similarly good results for the Los Angeles River and Drina River if 
used as test sets: roughly 0.5 debris IoU and 0.8 of debris accuracy. The 
first three columns from Fig. 11 show that the detection is almost perfect 
for the Drina River test set, except for the case of the fourth image, where 
prediction accuracy is low. We believe the latter result is caused by 
weather conditions, the mountains are covered in snow, which is highly 
reflective, a phenomenon that is not present in the training dataset for 
that region. Conversely, for the case of the Yangtze River our approach 
largely failed at correctly predicting debris pixels, as we obtain a 0.02 
IoU and 0.07 accuracy. The prediction accuracy for the debris label was 
low due to misclassification as other pixels. In this case, the nature of the 
river is different from the Drina and Los Angeles River, being much 
deeper and carrying more sediment. This also affects the nature and 
reflectivity of the accumulated debris, as shown in Fig. 3. This can be 
seen even in the RGB images in Fig. 11, where the third and fourth 
images correspond to times where a large amount of sediment is present 
in the water south of the dam resulting in a brown appearance to the 
naked eye. Correspondingly, the network incorrectly assigns the other 
label to most of the water pixels. We believe that such errors stem from 
the unique nature of the Yangtze River, i.e., very large discharge and 

sediment presence. These can be overcome by expanding our training 
set, or, as future work, using more sophisticated data augmentation 
procedures that can recreate such characteristics. However, given the 
high accuracy results for the Drina River and the Los Angeles River 
image sets, we believe that our approach generalizes well to typical 
urban and rural rivers. 

3.2. Area monitoring 

As a final evaluation of real-world applications, we tested the per
formance of our system for one of our test areas over the complete period 
during which Sentinel-2 has been in service. This would be the typical 
use case for monitoring an area or to obtain statistics and predict debris 
accumulation around the year. For this task, we selected the Drina River 
region for evaluation and used all the labeled images from our dataset 
for training, plus four additional training images to cover the various 
seasons. These extra training images correspond to slightly cloudy days 
that were not present in the original set, and examples of autumn 
landscapes, where vegetation is mostly absent. For our test set, we use all 
other Sentinel-2 images from the same region, except those with heavy 
cloud cover. As seen in Fig. 12, the segmentation result shows a recur
rent annual pattern, where debris accumulation is higher at the begin
ning of the year and quickly decreases as the garbage net in the region is 
cleared. The figure also allows us to extract the encountered maximum 
amount of debris. This maximum can be verified with the corresponding 
RGB image that shows a heavy accumulation in the area, even though it 
is partially hidden under clouds. Fig. 12 also shows examples of mod
erate debris accumulation and no debris accumulation from different 
years in the area. 

Fig. 9. Segmentation results when using DV3X, a fully connected multilayer perceptron (ANN), and the method proposed by Biermann et al. (2020) based on the 
floating debris index (FDI). Both the ANN and the Biermann et al. approaches achieve significantly less accurate results than DV3X. 

Fig. 10. Cross validation confusion matrices using the DV3X architecture.  
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4. Conclusion 

We have presented a learning-based method to segment satellite 
imagery to identify accumulated surface debris in rivers. Our dataset 
was compiled from the Sentinel-2 dataset and, based on previous work, 
we manually labeled pixels with a high likelihood of corresponding to 
man-made debris that has accumulated in river shores. We tested several 
state-of-the-art CNN architectures, identifying DV3X and our proposed 
U-Net3DE architecture as the best performing, with roughly 0.8 mean 
IoU across all labels. Moreover, cross-validation tests show that, for a 
large part of our dataset, such network architectures can successfully 
identify debris despite being trained with satellite images from different 
regions, meaning that our approach can generalize well from only a few 
exemplars to different environments. As such, our solution can be used 
to monitor or detect debris accumulation using publicly available sat
ellite imagery. Nevertheless, cross-validation results for the Yangtze 
River, however, expose that a larger training database should be created, 
such that exemplars from more varied bodies of water and weather 

conditions are available. Given that convolutional approaches can lead 
to spatial overfitting, i.e., learning to classify based on the spatial 
disposition of training pixel labels rather than content, future work can 
explore how to mix convolutional and purely spectral approaches to 
improve classification performance. Furthermore, future work can also 
focus on using the presented method with aerial imaging or data from 
other remote sensing platforms, such as the upcoming Sentinel satellite 
missions (European Space Agency, 2015b), whose increased spatial and 
spectral resolutions should lead to better classification results. 
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Fig. 11. RGB channels, ground truth from manual labeling, and prediction of part of our cross-validation tests when using the Drina River (left) and Yangtze River 
(right) as test dataset. 

Fig. 12. Left: Debris area detected over time across all Sentinel-2 images of the Drina River with no heavy cloud cover. Right: RGB bands and segmentation result 
corresponding to the times indicated in the graph. 
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