
Stochastic-Depth Ambient Occlusion

JOP VERMEER, Delft University of Technology, the Netherlands

LEONARDO SCANDOLO, Delft University of Technology, the Netherlands

ELMAR EISEMANN, Delft University of Technology, the Netherlands

HBAO SD HBAO-

Fig. 1. Left: Horizon-based ambient occlusion (HBAO) uses only a depth map and underestimates occlusion
due to hidden geometry. Right: Our stochastic-depth HBAO captures occluded geometry stochastically (2ms
in full HD).

Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by

darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications,

screen-space variants, relying on the depth buffer, are used due to their high performance and good visual

quality. However, these only take visible surfaces into account, resulting in inconsistencies, especially during

motion. Stochastic-Depth Ambient Occlusion is a novel AO algorithm that accounts for occluded geometry by

relying on a stochastic depth map, capturing multiple scene layers per pixel at random. Hereby, we efficiently

gather missing information in order to improve upon the accuracy and spatial stability of conventional screen-

space approximations, while maintaining real-time performance. Our approach integrates well into existing

rendering pipelines and improves the robustness of many different AO techniques, including multi-view

solutions.

CCS Concepts: • Computing methodologies→ Image-based rendering; Rasterization.

Additional Key Words and Phrases: Ambient occlusion, stochastic transparency, screen-space techniques

ACM Reference Format:
Jop Vermeer, Leonardo Scandolo, and Elmar Eisemann. 2021. Stochastic-Depth Ambient Occlusion. Proc. ACM
Comput. Graph. Interact. Tech. 4, 1 (May 2021), 15 pages. https://doi.org/10.1145/3451268

1 INTRODUCTION
Realistic global illumination is a hard problem in the field of computer graphics. Real-time applica-

tions, with a budget of milliseconds per frame, have to rely on approximations to represent indirect

lighting. A popular technique to approximate these phenomena is ambient occlusion (AO). It can

Authors’ addresses: Jop Vermeer, Delft University of Technology, Delft, the Netherlands, j.vermeer@bulletwhale.games;

Leonardo Scandolo, Delft University of Technology, Delft, the Netherlands, l.scandolo@tudelft.nl; Elmar Eisemann, Delft

University of Technology, Delft, the Netherlands, e.eisemann@tudelft.nl.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3451268.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/3451268
https://doi.org/10.1145/3451268
https://doi.org/10.1145/3451268

2 Vermeer, Scandolo, and Eisemann

help a viewer better understand the scene’s geometry because it captures geometric proximity by

modulating the amount of ambient light reaching a point by its accessibility [Zhukov and Iones

1998], i.e., the portion of directions from which light can reach the point. Although not physically

accurate, it is comparatively fast to compute and yields convincing results in practice, leading to a

widespread use [Landis 2002].

Most real-time implementations rely on screen-space AO [McGuire et al. 2011], using the depth

buffer as only input. This reduces the complexity of the problem and leads to high performance

on GPUs. Nevertheless, the loss of information when working only with a 2D projection of the

geometry results in artifacts. A depth map captures only the first visible surfaces in a scene and

cannot account for occluded objects. For AO computations, it means that a point’s accessibility is

often underestimated because hidden geometry is ignored. This results in AO pop-in; as the camera

moves, occluded objects come into view, inducing sudden changes.

In this work, we propose a novel screen-space AO algorithm that can account for occluded

objects in order to avoid pop-in artifacts via the use of a stochastic depth map. Inspired by the

stochastic transparency algorithm [Enderton et al. 2010], we efficiently create a depth map, where

each pixel contains (potentially hidden) surfaces from random depth layers. We compute AO values

using modified versions of well-known AO algorithms, taking this modified input into account.

Furthermore, our method can be extended to multiple views to avoid artifacts by polygons

perpendicular to the camera view, which are not represented in the view’s depth map. While

conventional multiple viewpoint AO methods struggle with camera placement, since it is hard

to ensure that additional cameras are not occluded by scene geometry, our stochastic depth map

effectively sees through geometry, simplifying this placement.

2 RELATEDWORK
The idea of modulating light based on local geometry was introduced by Zhukov et al. [Zhukov and

Iones 1998], and Landis et al. [Landis 2002] in the context of ray tracing. Pharr and Green [Pharr

and Green 2004] propose to use precomputation in static scenes for use in real-time rendering.

Sloan et al. [Sloan et al. 2002] and Ren et al. [Ren et al. 2006] used spherical proxies to simplify

scene geometry and store accessibility as spherical harmonics.

Bunnell [Bunnell 2005] presented a real-time method that generates discs at vertex locations,

which are used to approximate occlusion. Shanmugam et al. [Shanmugam and Arikan 2007]

proposed to splat proxy spheres to a screen buffer which are then sampled to compute AO. Mit-

tring [Mittring 2007] relied on a sample-based screen-space method using only the depth buffer.

McGuire et al. [McGuire et al. 2012, 2011] improved this solution via artist-adjustable parameters,

low-bitrate values, variable sampling rates, and multiple LODs. Hoang et al. [Hoang and Low

2012] presented a multi-resolution sampling approach with temporal filtering. In horizon-based
ambient occlusion (HBAO) [Bavoil et al. 2008] the depth buffer is sampled along a few directions to

find the horizon angle under which all directions are assumed occluded. This method was later

extended [Jiménez et al. 2016; Tatarinov and Panteleev 2016] to improve the approximation in the

presence of thin occluders. Other works [Hendrickx et al. 2015; Loos and Sloan 2010] proposed a

statistical volumetric approximation to compute occlusion, which avoids the bilateral filtering step

commonly employed in sampling-based methods.

To capture invisible geometry, the scene can be voxelized on-the-fly [Reinbothe et al. 2009], using

a single-pass voxelization algorithm [Eisemann and Décoret 2006], and ray-traced AO values based

on the voxel grid. Nevertheless, the method remains costly compared to screen-space alternatives.

For real-time applications, the voxel grid needs to be of low resolution, which results in a loss

of high-frequency details and severe shortcomings in the presence of thin occluders. Kroes et

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 3

al. [Kroes et al. 2015] proposed a simplified method for voxel-based ambient occlusion for volume

rendering.

Ambient occlusion fields [Kontkanen and Laine 2005] are volumes surrounding each object that

directly store the occlusion caused by this object. Ambient occlusion volumes [Laine and Karras 2010;
McGuire 2010] extended this approach for use with dynamic geometry, by creating per-triangle

volumes similar to shadow-volume techniques [Crow 1977]. While these techniques can provide

higher quality ambient occlusion than screen-space algorithms, they are less efficient due to the

overdraw created by the large amount of rendered volumes.

Multi-view ambient occlusion [Vardis et al. 2013] enhances traditional screen-space algorithms

using information from multiple viewpoints, either from other available depth buffers such as

shadow maps, or dedicated views. In complex scenes with many occluders, secondary buffers may

not capture enough information for an accurate AO estimation, therefore the effectiveness of this

approach is scene dependent, but its performance is suitable for real-time applications.

Another approach is to extend screen-space ambient occlusion using transparency techniques.

Some techniques compute and store all depth layers from the main camera viewpoint in per-pixel

lists. This can be accomplished via depth peeling [Bavoil and Sainz 2009; Ritschel et al. 2009] or

A-buffer [Carpenter 1984; Yang et al. 2010] construction [Bauer et al. 2013], where all layers are

recorded and the one providing maximum occlusion is used. Although these techniques achieve

good results, their efficiency is limited by the amount of recorded depth layers, making them difficult

to apply for real-time applications, especially in complex scenes. To overcome this limitation, Mara

et al. [Mara et al. 2016] and the HBAO+ algorithm [Tatarinov and Panteleev 2016] restrict the

computation to only two depth layers. The disadvantage of using a fixed amount of depth layers is

that it does not work well for every scene, e.g., scenes with many obstructing objects could still

show view-dependent artifacts. A slightly different approach is to create deep buffers [Nalbach

et al. 2014], where only part of the scene is captured using proxies known as surfels. These work
well in practice, but the splatting procedure can be costly, especially if done only for AO.

Real-time ray tracing is also an alternative for obtaining access to the entire scene geometry

when computing AO [Gautron 2020]. Nevertheless, this requires the construction of acceleration

structures for all dynamic parts of the scene at each frame. This severely limits its applicability

for real-time applications, especially in the presence of shader-based animation techniques (e.g.

skeleton rigging), since they do not map well to ray-traced solutions, but are handled seamlessly

by image-based solutions.

3 STOCHASTIC-DEPTH AMBIENT OCCLUSION
In this section, we will present our AO solution. We start with the characteristics and creation

procedure of our stochastic depth map (Sec. 3.1), which serves as input to the AO computation.

Then, we explain how to use it in a screen-space algorithm by extending popular single-layer

ambient occlusion techniques (Sec. 3.2) and introduce a simple heuristic to decrease computational

costs (Sec. 3.3). Finally, we extend our method using a second viewpoint to avoid artifacts arising

from view-perpendicular polygons (Sec. 3.4).

3.1 Stochastic depth map
The stochastic depth map is a multisample texture, containing one or more depth values per

pixel, corresponding to random scene surfaces mapping to the pixel. In previous work [Bauer

et al. 2013; Bavoil and Sainz 2009; Liu et al. 2013], only the first 𝑛 visible layers have been used

for this purpose, through depth-peeling or the usage of A-buffers. These methods either require

multiple render passes, or have large and unbounded memory requirements to achieve this goal.

In contrast, we revisit ideas from stochastic transparency, commonly used for order-independent

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

4 Vermeer, Scandolo, and Eisemann

p

n
h

p

n

h

p

n
h

p

n

h

Fig. 2. Standard HBAO (left) uses samples from the first layer, which misses occlusions, while stochastic-depth
samples (right) capture them much better.

transparency (OIT) [Enderton et al. 2010]. Instead of an ordered list of the first visible layers, a

stochastic depth-map pixel contains a random subset of the scene layers. To efficiently capture

these layers, we use a multisample texture, where all sample locations are set to the pixel center.

Hereby, we can store all samples in a single render pass.

The creation of this map is similar to rendering a regular depth map, and is thus simple and

fast. The only difference lies in the fragment shader, where we randomly discard fragments for

each sample based on a global transparency value 𝛼 . The fastest and easiest solution to generate

stochastic samples is to use a hashing function in the fragment shader, using the pixel location,

sample index, and sample depth, to generate a uniformly distributed random number between 0

and 1. The value is compared to 𝛼 in order to decide on storing or discarding it. In order to avoid

over or under representation of certain layers, a more sophisticated method can be used. In practice,

we use a stratified sampling approach similar to that of stochastic transparency [Enderton et al.

2010], where we keep 𝑆 per-pixel samples (typically 𝑆 is between 1 and 16). An incoming fragment

𝑓𝑖 will be stored in 𝑅𝑖 of these pixel samples, where we compute 𝑅𝑖 as:

𝑅𝑖 = ⌊𝛼𝑆 + b⌋ (1)

Here, b is a uniformly distributed random number between 0 and 1. This formula implies that the

fragment is expected to be stored in 𝛼𝑆 samples. To determine in which 𝑅𝑖 samples we store 𝑓𝑖 , we

precompute all possible subsets of 𝑅𝑖 samples out of the total of 𝑆 samples in a lookup table. The

table contains 𝑆-bit numbers with 𝑅𝑖 active bits. At run time, we retrieve one such number for each

fragment-pixel combination and if its 𝑗th bit is set, we store fragment 𝑓𝑖 in sample 𝑗 and discard 𝑓𝑖
otherwise. Algorithm 1 shows pseudocode of the stochastic-depth fragment shader, which uses

stratified sampling. We found that global 𝛼 values between 0.2 and 0.5 work well in most situations

and use 0.2 for all tests in Sec. 4.

Alg. 1 runs once per fragment, deciding which set of samples will discard the depth value by

way of setting a built-in sample mask (gl_SampleMask in OpenGL). Since we are creating a depth

map, we can take advantage of hardware-supported depth testing to reduce overdraw and increase

efficiency. Therefore, for samples that do not discard a fragment, the corresponding depth value

is still subject to the regular depth test. While this biases the samples towards the closest layers,

these are often the most relevant for AO values. Finally, since we capture positions, we linearize

the depth value before storage.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 5

Algorithm 1 Stratified stochastic depth

1: 𝑆 ← number of samples

2: 𝑖 ← current fragment

3: 𝑧𝑖 ← depth of fragment 𝑖

4: b ← random number between 0 and 1, using 𝑖 and 𝑧𝑖 as seed

5: 𝑅𝑖 ← ⌊𝛼𝑆 + b⌋
6: if 𝑅𝑖 == 𝑆 then ⊲ Trivial case, all samples stored

7: 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑠𝑘 ← 0xffff
8: else if 𝑅𝑖 == 0 then ⊲ Trivial case, no samples stored

9: discard fragment

10: else ⊲ Store a random precomputed subset of size 𝑅𝑖
11: 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑠𝑘 ← random subset mask with 𝑅𝑖 set bits

One caveat of stochastically discarding fragments when generating the stochastic depth map is

that early-z fragment culling cannot be performed by the GPU, resulting in decreased performance.

Regular depth map creation times are 20% to 50% faster in our tests than 1-sample stochastic

depth map creation times (see Table 2). Furthermore, in most real-time applications, CPU culling is

performed in order to avoid issuing render calls for parts of the scene which are not visible from

the current viewpoint. Using a stochastic depth map would require modifications to such culling

schemes to avoid culling parts of the scene within the camera frustum that would be occluded

by the first visible layers. When considering culling strategies in combination with our method,

distance criteria can be considered, as nearby AO is of higher relevance than far away. Nevertheless,

adapting culling strategies generally remains future work.

3.2 Ambient occlusion computation
For a point 𝑝 with normal 𝑛𝑝 , AO is typically computed as:

𝐴𝑂 = 1 − 1

𝜋

∫
Ω
(𝑛𝑝 · 𝜔)𝑉 (𝑝,𝜔) 𝑑𝜔 (2)

Here, Ω is the normal-facing hemisphere at point 𝑝 and𝑉 (𝑝,𝜔) is the visibility function, returning

values between 0 and 1, representing the occlusion of 𝑝 in direction 𝜔 . Once the stochastic depth

map is computed, we can integrate it in different screen-space AO techniques and implemented

solutions for SSAO [McGuire et al. 2011], HBAO [Bavoil et al. 2008], and HBAO+ [Nvidia 2013].

Stochastic-depth SSAO. SSAO is a simple and effective approximation. With respect to Eq. 2,

the hemisphere is translated to a screen-space area (a circle or a box) around the screen-space

position of point 𝑝 . Instead of sampling individual rays, locations are chosen from this region.

The depth sample at this location results in a contribution that is one if the sample is within the

hemisphere around 𝑝 and at a distance closer than a given threshold, otherwise, it contributes with

zero. Typically, a smooth distance-based falloff function is used in practice and the weight of the

sample is modulated by the cosine of the angle of its position with respect to the normal.

To integrate our stochastic depth map, we sample all its depth layers when a screen-space

location around 𝑝 is selected. Small optimizations can be done in the world-space translation due

to the samples sharing the same screen-space location.

Stochastic-depth HBAO(+). We also extend Horizon-Based Ambient Occlusion (HBAO) [Bavoil

et al. 2008], and HBAO+[Nvidia 2013], two well-known screen space AO techniques. Conceptually,

for a point 𝑝 with normal 𝑛𝑝 , HBAO computes the maximum horizon angle ℎ\ for all directions \

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

6 Vermeer, Scandolo, and Eisemann

perpendicular to 𝑛𝑝 . Thus, one can walk along the direction \ and test the stored depth samples

and assume that all rays passing underneath the encountered sample are blocked:

𝐴𝑂 = 1 − 1

2𝜋

∫
2𝜋

0

∫ 𝜋

ℎ\

cos (ℎ) 𝑑ℎ 𝑑\ (3)

In practice, the outer integral of Eq. 3 is computed via a Monte-Carlo approximation, where we

only compute the result for a small set of 𝑁𝑑 directions. Along each direction we take 𝑁𝑠 samples

from the depth map and keep track of the highest horizon-angle found. This horizon-angle is then

used to compute the inner integral, which analytically has the form 1 − sin (ℎ\). Since AO is a

local effect with a user-defined radius 𝑟 , depth samples beyond that radius are discarded. Finally, a

distance-based attenuation function𝑊 can be used to decrease the impact of far-away occluders.

For our extension, at each step, we examine all samples, and only keep the one within the user-set

radius that would result in the maximum occlusion, taking the angle and attenuation function𝑊

into account. Algorithm 2 shows the pseudocode and Fig. 2 shows a graphic representation of the

improvement achieved by using stochastic depth samples over standard HBAO.

HBAO+ is another variant of HBAO but uses a simpler approximation to compute the occlusion

value. It also works by exploring perpendicular directions to a point, but it does not attempt to

locate a horizon angle. Instead, once a sample 𝑠 is obtained, 𝑠 −𝑝 is projected to the normal direction

and modulated via the standard distance weight function. This value is averaged over all samples

within the given radius, in order to avoid overestimating the AO contribution of thin occluders. For

our extension, we simply include all stochastic samples in the HBAO+ calculation.

3.3 Sampling efficiency
Retrieving all depth samples from the stochastic depth buffer when computing HBAO and HBAO+

can be costly. In simple geometric configurations (e.g. a flat surface), the depth buffer already

contains all the necessary information. Therefore, when sampling a screen-space location, we

first query the depth buffer and decide whether the stochastic depth buffer needs to be accessed.

Since all samples in both depth buffers share the same screen-space coordinates, the regular depth

map sample contains the lowest depth and would result in the largest angle to the tangent vector.

Although the falloff function could result in a slightly higher AO value for larger depths for some

geometric configurations, we found no visible difference in our results, and thus opt to forego

querying the stochastic samples when the regular depth map sample is within the AO radius

in order to improve runtime performance. Similarly, when computing SSAO and have chosen a

sampling location, we do not access the samples in the stochastic depth map if the regular depth

map sample already represents an occluder.

3.4 Multiple viewpoints
A common problem of screen-space methods are flat surfaces almost aligned with the camera

view direction, as the projection of these triangles does not result in any (or very few) fragments,

meaning that they are ignored when using screen-space computations. For AO methods, missing

occlusion (as seen in Fig. 3) can suddenly appear when the view direction changes.

To avoid this artifact, we propose to use a secondary stochastic depth map at an angle from the

main viewpoint, hence, better capturing aligned surfaces. In previous work [Ritschel et al. 2009;

Vardis et al. 2013], multiple-viewpoint AO suffered when geometry remained occluded. Yet, it is

challenging to place the secondary camera such as to avoid occlusions, which is necessary to have

a contribution towards the AO computation. In contrast, using a stochastic buffer for the secondary

view prevents occlusion problems.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 7

Algorithm 2 Stochastic depth HBAO

1: 𝑝 ← view space fragment position

2: 𝑛𝑝 ← view space fragment normal

3: 𝑟 ′← projected radius 𝑟 onto image plane

4: Determine stepsize as 𝑟 ′/(𝑁𝑠 + 1)
5: Determine directions with random offset

6: 𝐴𝑂 ← 0

7: for direction 𝑑𝑖 where 𝑖 = 0 to 𝑁𝑑 do
8: 𝑡𝑝 ← tangent vector in direction 𝑑𝑖
9: 𝑡\ ← angle of 𝑡𝑝 with 𝑋𝑌-plane

10: ℎ\ ← 𝑡\ + 𝑏𝑖𝑎𝑠 ⊲ Current horizon angle

11: for step 𝑠 𝑗 where 𝑗 = 0 to 𝑁𝑠 do
12: Sample 𝑠 ← view-space pos. at step 𝑗 (reg. depth buffer)

13: 𝑣 ← 𝑠 − 𝑝
14: 𝜙 ← angle of 𝑣 with 𝑋𝑌-plane

15: if 𝜙 < ℎ\ then
16: continue

17: if | |𝑣 | | < 𝑟 then
18: 𝐴𝑂 ← 𝐴𝑂 +𝑊 (| |𝑣 | |) (𝑠𝑖𝑛(𝜙) − 𝑠𝑖𝑛(ℎ\))
19: ℎ\ ← 𝜙

20: else
21: 𝐴𝑂𝑚𝑎𝑥 ← 0

22: ℎ𝑚𝑎𝑥 ← 0

23: 𝑠𝑑𝑠 [] ← stochastic depth values at current position

24: for each depth value 𝑘 in 𝑠𝑑𝑠 do
25: 𝑠𝑘 ← view space position using depth 𝑘

26: 𝑣𝑘 ← 𝑠𝑘 − 𝑝
27: 𝜙𝑘 ← angle of 𝑣𝑘 𝑋𝑌-plane

28: if 𝜙𝑘 > ℎ\ and | |𝑣𝑘 | | < 𝑟 then
29: 𝐴𝑂𝑘 ←𝑊 (| |𝑣𝑘 | |) (𝑠𝑖𝑛(𝜙𝑘) − 𝑠𝑖𝑛(ℎ\))
30: if 𝐴𝑂𝑘 > 𝐴𝑂𝑚𝑎𝑥 then
31: 𝐴𝑂𝑚𝑎𝑥 ← 𝐴𝑂𝑘

32: ℎ𝑚𝑎𝑥 ← 𝜙𝑘

33: if 𝐴𝑂𝑚𝑎𝑥 > 0 then
34: 𝐴𝑂 ← 𝐴𝑂 +𝐴𝑂𝑚𝑎𝑥

35: ℎ\ ← ℎ𝑚𝑎𝑥

36: 𝐴𝑂 ← 1 − 𝐴𝑂
𝑁𝑑

37: return 𝐴𝑂

In our implementation, we place the secondary view at a set distance to the side of the original

camera, and angled such that the original camera frustum is fully covered. We extended the

stochastic-depth HBAO+ algorithm to account for the extra viewpoint information (as shown in

Algorithm 3), since it only requires a position 𝑝 and a normal 𝑛, and unlike HBAO it does not

require us to compute a tangent vector.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

8 Vermeer, Scandolo, and Eisemann

SD-HBAO+

View

HBAO+

Multiview
SD-HBAO+

Fig. 3. With single-view screen space ambient occlusion techniques, the sides of the rectangle are under a
grazing angle with themain camera, resulting inmissing ambient occlusion. Usingmulti-view stochastic-depth
ambient occlusion, we can correctly capture this missing occlusion.

HBAO

SD-HBAO

DP-HBAO

SD-HBAO

SibenikSponza San Miguel Hairball

Fig. 4. Comparison of horizon-based ambient occlusion using a single depth layer, our stochastic depth map
with 4 samples per pixel, and the full depth-peeled set of layers for our test scenes.

4 RESULTS
All results presented in this section were obtained at full HD (1920x1080) resolution on an Intel

i7-5820K CPU with a Nvidia Titan V GPU running Windows 10. Our solution consists of two

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 9

Algorithm 3Multi-view stochastic depth HBAO+

1: 𝑝 ← view space position fragment position

2: 𝑛𝑝 ← view space position fragment normal

3: 𝐴𝑂 ← 0

4: for each camera 𝑙 do
5: 𝐴𝑂 ←𝑚𝑎𝑥 (𝐴𝑂,𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑂 (𝑝, 𝑛𝑝 , 𝑙))
6: 𝐴𝑂 ← 1 − 𝐴𝑂

𝑁𝑑 ·𝑁𝑠

7: return 𝐴𝑂

8: function ComputeAO(𝑝, 𝑛𝑝 , 𝑙)

9: 𝑝𝑙 ← 𝑝 transformed to the view space of camera 𝑙

10: 𝑝𝑠𝑐𝑟𝑒𝑒𝑛 ← 𝑝𝑙 projected to the screen space of camera 𝑙

11: Normal 𝑛𝑙 ← 𝑛𝑝 transformed to the view space of camera 𝑙

12: Determine step size as 𝑟 ′/(𝑁𝑠 + 1)
13: Determine directions with random offset

14: 𝐴𝑂 ← 0

15: for direction 𝑑𝑖 where 𝑖 = 0 to 𝑁𝑑 do
16: Randomly offset first step

17: for step 𝑠 𝑗 where 𝑗 = 0 to 𝑁𝑠 do
18: 𝐴𝑂𝑚𝑎𝑥 ← 0

19: sds[]← stoch. depths (texture 𝑙 , step 𝑗 , dir. 𝑑𝑖)

20: for each depth value 𝑘 in sds do
21: 𝑠𝑘 ← view-space position using depth 𝑘

22: 𝑣𝑘 ← 𝑠𝑘 − 𝑝𝑙
23: 𝐴𝑂𝑘 ←𝑊 (| |𝑣𝑘 | |)𝑚𝑎𝑥 (𝑣𝑘 ·𝑛𝑙| |𝑣𝑘 | | − 𝑏𝑖𝑎𝑠, 0)
24: 𝐴𝑂𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝐴𝑂𝑚𝑎𝑥 , 𝐴𝑂𝑘)
25: 𝐴𝑂 ← 𝐴𝑂 +𝐴𝑂𝑚𝑎𝑥

26: return 𝐴𝑂

HBAO SD-HBAO
1 sample

SD-HBAO
2 samples

SD-HBAO
4 samples

SD-HBAO
8 samples

SD-HBAO
16 samples

DP-HBAO

Fig. 5. Comparison of results with different stochastic sample counts for a closeup of the Sponza scene.

separate render passes: the render pass of the stochastic depth map and a screen-space AO compute

pass. A conventional depth map is used by our AO compute pass, which most common pipelines

offer as a result of a depth pre-pass or g-buffer generation, which is why we do not include its

creation time in the results. Furthermore, a (separable) bilateral filter step is applied, which has a

small fixed runtime cost (0.23ms), and is not included in the timings to better compare the cost of

the core AO steps for single-layer and stochastic versions of the algorithms. The timings of the

creation of the stochastic depth map is scene dependent, as the stochastic treatment of fragments

can create overdraw, depending on the scene complexity. Conversely, the AO computation step is

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

10 Vermeer, Scandolo, and Eisemann

Half res
SD-HBAO

Half res
SD-HBAO

Full res
SD-HBAO

Fig. 6. Close-up comparison of our stochastic counterpart at full resolution and half resolution in the Sibenik
scene. The low frequency nature of AO leads to good results even at lower resolutions.

SSAO HBAO HBAO+

Regular 0.926 0.734 0.694

1 stochastic sample 1.192 1.124 1.081

2 stochastic samples 1.460 1.302 1.372

4 stochastic samples 2.161 1.762 1.978

8 stochastic samples 3.557 2.528 3.212

16 stochastic samples 5.967 4.823 5.527

Table 1. Timings (in ms) of stochastic-depth ambient occlusion (AO computation only) with the different
screen-space ambient occlusion algorithms in the Sponza scene.

Normal
SD-HBAO

Compensated
SD-HBAO

DP-HBAO

Fig. 7. Compensating for missing samples by increasing (in this example doubling) the contribution of
stochastic samples can reintroduce missing occlusion. In this case, 2 stochastic samples per-pixel were used.

largely scene-agnostic, although some optimizations, as discussed in Sec. 3.3, may alter run-time

performance depending on the map’s complexity.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 11

View

Original

5 extra
layers

5 extra layers
and
compensation

Extra
layers

10 extra
layers

10 extra layers
and
compensation

Fig. 8. Adding extra layers to the pillar in the Sponza scene reduces the number of stochastic depth samples
from background layers, which results in decreased AO values. Adding a compensation multiplier for AO
from stochastic layers can restore some of the missing occlusion.

Sponza Sibenik San Miguel Hairball

Regular HBAO+

Full resolution 1.042 0.848 0.608 0.252

Half resolution 0.226 0.179 0.195 0.077

1-sample SD-HBAO+

Full resolution 1.259 (0.178) 1.344 (0.096) 2.285 (0.845) 1.718 (1.213)

Half resolution 0.382 (0.071) 0.333 (0.040) 1.127 (0.809) 0.774 (0.621)

2-sample SD-HBAO+

Full resolution 1.577 (0.205) 1.506 (0.111) 2.508 (0.862) 1.900 (1.221)

Half resolution 0.436 (0.076) 0.412 (0.043) 1.165 (0.807) 0.841 (0.642)

4-sample SD-HBAO+

Full resolution 2.313 (0.334) 2.131 (0.157) 3.243 (0.936) 2.494 (1.540)

Half resolution 0.622 (0.114) 0.579 (0.055) 1.312 (0.816) 1.074 (0.794)

8-sample SD-HBAO+

Full resolution 3.837 (0.625) 3.667 (0.257) 4.619 (1.107) 3.739 (2.120)

Half resolution 1.038 (0.175) 0.979 (0.081) 1.697 (0.849) 1.452 (0.989)

16-sample SD-HBAO+

Full resolution 7.005 (1.467) 6.727 (0.660) 7.323 (1.753) 5.993 (3.117)

Half resolution 1.922 (0.390) 1.805 (0.176) 2.473 (0.972) 2.427 (1.622)

Table 2. Timings in ms of stochastic-depth ambient occlusion with a different amount of stochastic depth
samples on both full and half resolution (1920x1080 and 960x540 respectively). Numbers in parenthesis
indicate the time for the creation of the stochastic depth map only, which are included in the total time.

Table 1 shows timings for different stochastic AO methods presented in Sec. 3.2. HBAO and

HBAO+ variants were evaluated with 8 directions per pixel and 4 samples per direction, and SSAO

variants were evaluated with 32 samples per pixel to obtain similar performance. The stochastic

depth map is likewise created using stratified sampling and a common 𝛼 of 0.2 for all layers. For

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

12 Vermeer, Scandolo, and Eisemann

Single Camera Multi-view Multi-view Multi-view

Full resolution Full resolution Half resolution Half resolution only sec. view

1-sample SD-HBAO+ 1.344 (0.096) 2.852 (0.211) 0.615 (0.084) 2.157 (0.142)

2-sample SD-HBAO+ 1.506 (0.111) 2.885 (0.226) 0.698 (0.086) 2.462 (0.156)

4-sample SD-HBAO+ 2.131 (0.157) 3.836 (0.272) 0.873 (0.101) 3.116 (0.201)

8-sample SD-HBAO+ 3.667 (0.257) 5.419 (0.376) 1.223 (0.125) 4.523 (0.304)

Table 3. Timings in ms of the HBAO+ variant of stochastic-depth ambient occlusion in the Sibenik scene at
FullHD resolution with different multi-view and resolution configurations. Numbers in parenthesis indicate
the time for the creation of the stochastic depth map only, which are included in the total time.

HBAO

SD-HBAO

Fig. 9. Bent normals and cones computation can use stochastic samples similarly to AO computation. In this
image, bent normals along the wall edge remain consistent when using stochastic depth samples, producing
a red tint.

the rest of this section, we focus on timings of our stochastic-depth HBAO+ (SD-HBAO+) solution,

since it usually falls between the other two variants for our configuration (Table 1). In most figures,

we show HBAO results, as it produces higher AO values, which makes differences between methods

and configurations easier to spot, and we refer the reader to our supplementary video for a side-by-

side example of the different methods. Unless explicitly stated, the mentioned parameters were

maintained for all tests in this section.

Fig. 4 shows a comparison of our stochastic-depth HBAO (SD-HBAO) using 4 samples against a

standard HBAO implementation, and an HBAO implementation that precomputes all scene layers

through depth peeling (DP-HBAO). This last version has access to all scene geometry and showcases

a best-result scenario for screen-space AO methods.

Sample count. Table 2 shows timings of standard HBAO+ and our method in several test

scenes [McGuire 2017] at full-HD and half full-HD resolution. The screen-space AO computa-

tion is largely scene independent, and scales sub-linearly with the processed samples. In contrast,

the creation time of the stochastic depth map varies with scene complexity. It is higher for San

Miguel and Hairball, but moderate for Sponza and Sibenik, which are more representative of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

Stochastic-Depth Ambient Occlusion 13

typical real-time complexity. Using up to 4 stochastic samples remains an attractive alternative

to traditional AO algorithms, as the cost remains between 1ms and 4ms. Higher sample counts

become less practical for high-performance applications. Fig. 5 shows a comparison of the results

using different stochastic sample counts for the Sponza scene. In practical applications, lower

level-of-detail geometry and appropriate visibility culling can improve the creation time of the

stochastic depth map, especially for objects far away from the camera. For time-critical applications,

our solution can be computed at lower resolution (AO is typically smooth). Fig. 6 shows an example

of SD-HBAO rendered at half resolution in the Sibenik scene. Table 1 shows that, as expected,

halving the resolution results in roughly 4x increase in speed across all configurations.

Multi-view ambient occlusion. Table 3 shows the timings for our multi-view solution in the

Sponza scene. The extra time is due to the additional render pass for the secondary depth map,

as well as the evaluation of these extra samples during the AO computation. Render time can be

reduced again by using a half-resolution buffer (Table 3).

Missing occlusion compensation. The results highlighted in Fig. 4 and Fig. 5 show that our

stochastic-depth AO variants can capture the missing occlusion in traditional screen-space AO

algorithms. Nevertheless, compared to the reference via depth peeling, it necessarily underesti-

mates the AO value, since the stochastic samples may miss occluders partially. We can reintroduce

missing occlusions in an ad-hoc manner by artificially increasing the occlusion contribution of the

stochastic samples, which will be distributed during the bilateral filter pass. We empirically found

that doubling the AO contribution of stochastic samples can restore occlusion values that better

match full depth-peeling-based AO at lower sample counts. Fig. 7 shows an example of the results

obtained for the San Miguel scene with two stochastic samples per pixel. Only Fig. 7 and Fig. 8

contain such compensation.

Bent normals and cones. When using image-based lighting (IBL), or other forms of environ-

ment lighting, it is common to involve the fragment’s normal. Bent normals [Landis 2002] and

cones[Klehm et al. 2012] use an approximation of the average locally unoccluded directions instead

of the fragment normal, which can be efficiently computed along with AO. Including stochastic

samples in the bent normals and cones computations is straightforward. Our tests reveal only

a slight cost increase (<0.2ms for 4 stochastic samples). As for AO, our stochastic samples for

bent-normal and cone computation provides increased robustness, especially, under motion, when

geometry becomes occluded or unoccluded. Yet, the effects tend to be more subtle. Fig. 9 shows an

example of the difference when using stochastic samples to compute bent normals.

Limitations. When many layers exist between an occluder and the camera, AO values can be

underestimated since fewer samples will be captured in the stochastic depth map. Fig. 8 shows an

example of this problem, where 5 and 10 extra geometry layers are added to a pillar between the

camera and a background occluder. Using a compensation factor can restore part of the missing

occlusion, but may cause an overestimation in some areas. A possible solution is to lower the global

transparency value 𝛼 , while increasing the sample count. With a fixed sample count, this usually

results in higher noise levels, which can be alleviated via an increased bilateral blur, or, as possible

future work, temporal filtering.

Sampling-based screen-space AO techniques typically result in noisy AO values, which are

smoothed using a bilateral filter. Our solution works in the same way, but the stochastic nature

of samples can increase the variance of AO values for regions receiving AO only from stochastic

samples, especially when using a single stochastic sample per pixel. This can result in noticeable

low-frequency noise under motion (see supplementary video). This artifact can be alleviated by

increasing the spatial bilateral filter radius, hereby increasing the amount of AO samples per pixel,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

14 Vermeer, Scandolo, and Eisemann

or by performing temporal filtering. Future work could focus on identifying such regions and

adaptively increasing the sample counts.

5 CONCLUSION
Our novel real-time solution using stochastic depth maps computes ambient occlusion in screen

space. It avoids the problem of hidden geometry in a simple yet robust manner and extends to

multiple views to eliminate artifacts that arise with view-aligned surfaces. Furthermore, bent-normal

and cone computations also profit from our method, leading to more realistic shading.

6 ACKNOWLEDGMENTS
We would like to thank the reviewer who pointed out an inefficient step in our stochastic depth

map creation algorithm. The test scenes were obtained from Morgan McGuire’s Computer Graphics

archive This work is partly supported by VIDI NextView, funded by NWO Vernieuwingsimpuls.

REFERENCES

Fabian Bauer, Martin Knuth, Arjan Kuijper, and Jan Bender. 2013. Screen-space ambient occlusion using a-buffer techniques.

In 2013 International Conference on Computer-Aided Design and Computer Graphics. IEEE, 140–147.
Louis Bavoil and Miguel Sainz. 2009. Multi-layer dual-resolution screen-space ambient occlusion. In SIGGRAPH 2009: Talks.
Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. 2008. Image-space horizon-based ambient occlusion. In ACM SIGGRAPH

2008 talks.
Michael Bunnell. 2005. Dynamic ambient occlusion and indirect lighting. Gpu gems 2, 2 (2005), 223–233.
Loren Carpenter. 1984. The A-buffer, an antialiased hidden surface method. In Proceedings of the 11th annual conference on

Computer graphics and interactive techniques. 103–108.
Franklin C. Crow. 1977. Shadow Algorithms for Computer Graphics. In Proceedings of the 4th Annual Conference on Computer

Graphics and Interactive Techniques (San Jose, California) (SIGGRAPH ’77). Association for Computing Machinery, New

York, NY, USA, 242–248. https://doi.org/10.1145/563858.563901

Elmar Eisemann and Xavier Décoret. 2006. Fast Scene Voxelization and Applications. In Proceedings of the 2006 Symposium
on Interactive 3D Graphics and Games (Redwood City, California) (I3D ’06). Association for Computing Machinery, New

York, NY, USA, 71–78. https://doi.org/10.1145/1111411.1111424

Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. 2010. Stochastic transparency. IEEE transactions on visualization
and computer graphics 17, 8 (2010), 1036–1047.

Pascal Gautron. 2020. Real-Time Ray-Traced Ambient Occlusion of Complex Scenes using Spatial Hashing. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Talks. 1–2.

Quintjin Hendrickx, Leonardo Scandolo, Martin Eisemann, and Elmar Eisemann. 2015. Adaptively layered statistical

volumetric obscurance. In Proceedings of the 7th Conference on High-Performance Graphics. 77–84.
Thai-Duong Hoang and Kok-Lim Low. 2012. Efficient screen-space approach to high-quality multiscale ambient occlusion.

The Visual Computer 28, 3 (2012), 289–304.
Jorge Jiménez, Xianchun Wu, Angelo Pesce, and Adrian Jarabo. 2016. Practical real-time strategies for accurate indirect

occlusion. SIGGRAPH 2016 Courses: Physically Based Shading in Theory and Practice (2016).
Oliver Klehm, Tobias Ritschel, Elmar Eisemann, and Hans-Peter Seidel. 2012. Screen-space bent cones: A practical approach.

GPU Pro 3 (2012), 191–207.
Janne Kontkanen and Samuli Laine. 2005. Ambient occlusion fields. In Proceedings of the 2005 symposium on Interactive 3D

graphics and games. 41–48.
Thomas Kroes, Dirk Schut, and Elmar Eisemann. 2015. Smooth probabilistic ambient occlusion for volume rendering. GPU

Pro 6: Advanced Rendering Techniques (2015), 475.
Samuli Laine and Tero Karras. 2010. Two Methods for Fast Ray-Cast Ambient Occlusion. In Proceedings of the 21st

Eurographics Conference on Rendering (Saarbrücken, Germany) (EGSR’10). Eurographics Association, Goslar, DEU,
1325–1333. https://doi.org/10.1111/j.1467-8659.2010.01728.x

Hayden Landis. 2002. Production-ready global illumination. Siggraph course notes 16, 2002 (2002), 11.
Fang Liu, Yunpeng Song, Xuehui Liu, and Xianchao Xu. 2013. Multi-layer screen-space ambient occlusion using hybrid

sampling. In Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its
Applications in Industry. 71–76.

Bradford James Loos and Peter-Pike Sloan. 2010. Volumetric obscurance. In Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. 151–156.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/563858.563901
https://doi.org/10.1145/1111411.1111424
https://doi.org/10.1111/j.1467-8659.2010.01728.x

Stochastic-Depth Ambient Occlusion 15

M.Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke. 2016. Deep G-Buffers for Stable Global Illumination Approximation.

In Proceedings of High Performance Graphics (Dublin, Ireland) (HPG ’16). Eurographics Association, Goslar, DEU, 87–98.
Morgan McGuire. 2010. Ambient occlusion volumes. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive

3D Graphics and Games.
MorganMcGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data https://casual-effects.com/data.
Morgan McGuire, Michael Mara, and David Luebke. 2012. Scalable ambient obscurance. In Proceedings of the Fourth ACM

SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 97–103.
Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic Hennessy. 2011. The alchemy screen-space ambient

obscurance algorithm. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics. 25–32.
Martin Mittring. 2007. Finding next Gen: CryEngine 2. In ACM SIGGRAPH 2007 Courses (San Diego, California) (SIGGRAPH

’07). Association for Computing Machinery, New York, NY, USA, 97–121. https://doi.org/10.1145/1281500.1281671

Oliver Nalbach, Tobias Ritschel, and Hans-Peter Seidel. 2014. Deep screen space. In Proceedings of the 18th meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 79–86.

Nvidia. 2013. ShadowWorks. https://developer.nvidia.com/shadowworks Accessed: 2020-12-22.

Matt Pharr and Simon Green. 2004. „Ambient Occlusion”, GPU Gems.

Christoph Reinbothe, Tamy Boubekeur, and Marc Alexa. 2009. Hybrid Ambient Occlusion.. In Eurographics (Areas Papers).
51–57.

Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu, Bo Sun, Peter-Pike Sloan, Hujun Bao, Qunsheng Peng, and

Baining Guo. 2006. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. In ACM
SIGGRAPH 2006 Papers. 977–986.

Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. 2009. Approximating Dynamic Global Illumination in Image

Space. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (Boston, Massachusetts) (I3D ’09).
Association for Computing Machinery, New York, NY, USA, 75–82. https://doi.org/10.1145/1507149.1507161

Perumaal Shanmugam andOkanArikan. 2007. Hardware Accelerated Ambient Occlusion Techniques onGPUs. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games (Seattle, Washington) (I3D ’07). Association for Computing

Machinery, New York, NY, USA, 73–80. https://doi.org/10.1145/1230100.1230113

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for real-time rendering in dynamic,

low-frequency lighting environments. In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. 527–536.

Andrei Tatarinov and Alexey Panteleev. 2016. Advanced Ambient Occlusion Methods for Modern Games. Game Developers

Conference. http://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.

pdf Accessed: 2020-07-15.

Kostas Vardis, Georgios Papaioannou, and Athanasios Gaitatzes. 2013. Multi-View Ambient Occlusion with Importance

Sampling. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Orlando, Florida) (I3D
’13). Association for Computing Machinery, New York, NY, USA, 111–118. https://doi.org/10.1145/2448196.2448214

Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. 2010. Real-Time Concurrent Linked List Construction

on the GPU. Computer Graphics Forum 29, 4 (2010), 1297–1304. https://doi.org/10.1111/j.1467-8659.2010.01725.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01725.x

S. Zhukov and G. Iones, A.and Kronin. 1998. An ambient light illumination model. In Rendering Techniques ’98. Springer
Vienna, Vienna, 45–55.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.

https://casual-effects.com/data
https://doi.org/10.1145/1281500.1281671
https://developer.nvidia.com/shadowworks
https://doi.org/10.1145/1507149.1507161
https://doi.org/10.1145/1230100.1230113
http://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://doi.org/10.1145/2448196.2448214
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01725.x

	Abstract
	1 Introduction
	2 Related Work
	3 Stochastic-depth ambient occlusion
	3.1 Stochastic depth map
	3.2 Ambient occlusion computation
	3.3 Sampling efficiency
	3.4 Multiple viewpoints

	4 Results
	5 Conclusion
	6 Acknowledgments
	References

